ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "486d5114-d81a-499b-b3c5-89c2b2bf054d"}, "_deposit": {"id": "10334", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "10334"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00010334"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1998-01-15", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "9", "bibliographicPageStart": "1", "bibliographicVolumeNumber": "41", "bibliographic_titles": [{"bibliographic_title": "JSME international journal. Series A"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "This paper presents a numerical shape optimization method for continua that minimizes some maximum local measure such as stress or displacement. A method of solving such min-max problems subject to a volume constraint is proposed. This method uses the Kreisselmeier-Steinhauser function to transpose local\n functionals to global integral functionals so as to avoid non-differentiability. With this function, a multiple loading problem is recast as a single loading problem. The shape gradient functions used in the proposed traction method are derived theoretically using Lagrange multipliers and the material derivative method. Using the traction method, the optimum domain variation that reduces the objective functional is numerically and iteratively determined while maintaining boundary smoothness. Calculated results for two- and three-dimensional problems are presented to show the effectiveness and\n practical utility of the proposed method for min-max shape design problems.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/12154"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u65e5\u672c\u6a5f\u68b0\u5b66\u4f1a"}]}, "item_10_relation_43": {"attribute_name": "\u7570\u7248\u3067\u3042\u308b", "attribute_value_mlt": [{"subitem_relation_type": "isVersionOf", "subitem_relation_type_id": {"subitem_relation_type_id_text": "http://ci.nii.ac.jp/naid/110002965260/", "subitem_relation_type_select": "URI"}}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "\u65e5\u672c\u6a5f\u68b0\u5b66\u4f1a"}, {"subitem_rights": "\u672c\u6587\u30c7\u30fc\u30bf\u306f\u5b66\u5354\u4f1a\u306e\u8a31\u8afe\u306b\u57fa\u3065\u304dCiNii\u304b\u3089\u8907\u88fd\u3057\u305f\u3082\u306e\u3067\u3042\u308b"}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1344-7912", "subitem_source_identifier_type": "ISSN"}]}, "item_10_text_14": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "SHIMODA, Masatoshi"}], "nameIdentifiers": [{"nameIdentifier": "31347", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "AZEGAMI, Hideyuki"}], "nameIdentifiers": [{"nameIdentifier": "31348", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "SAKURAI, Toshiaki"}], "nameIdentifiers": [{"nameIdentifier": "31349", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-20"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "110002965260_Numerical_solution.pdf", "filesize": [{"value": "1.0 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 1000000.0, "url": {"label": "110002965260_Numerical_solution.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/10334/files/110002965260_Numerical_solution.pdf"}, "version_id": "08a1fb7f-69f2-4dba-9863-3938e0444ed3"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "Optimum Design", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Finite Element Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Shape Optimization", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Min-Max Problem", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Kreisselmeier-Steinhauser Function", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Traction Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Material Derivative Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Adjoint Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Multiple Loading", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)"}]}, "item_type_id": "10", "owner": "1", "path": ["312/313/314"], "permalink_uri": "http://hdl.handle.net/2237/12154", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2009-09-04"}, "publish_date": "2009-09-04", "publish_status": "0", "recid": "10334", "relation": {}, "relation_version_is_last": true, "title": ["Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)"], "weko_shared_id": null}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500a 雑誌掲載論文
  3. 学術雑誌

Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)

http://hdl.handle.net/2237/12154
bed494e5-b290-41fd-a982-67b7f74ca069
名前 / ファイル ライセンス アクション
110002965260_Numerical_solution.pdf 110002965260_Numerical_solution.pdf (1.0 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2009-09-04
タイトル
タイトル Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)
著者 SHIMODA, Masatoshi

× SHIMODA, Masatoshi

WEKO 31347

SHIMODA, Masatoshi

Search repository
AZEGAMI, Hideyuki

× AZEGAMI, Hideyuki

WEKO 31348

AZEGAMI, Hideyuki

Search repository
SAKURAI, Toshiaki

× SAKURAI, Toshiaki

WEKO 31349

SAKURAI, Toshiaki

Search repository
権利
権利情報 日本機械学会
権利
権利情報 本文データは学協会の許諾に基づきCiNiiから複製したものである
キーワード
主題Scheme Other
主題 Optimum Design
キーワード
主題Scheme Other
主題 Finite Element Method
キーワード
主題Scheme Other
主題 Shape Optimization
キーワード
主題Scheme Other
主題 Min-Max Problem
キーワード
主題Scheme Other
主題 Kreisselmeier-Steinhauser Function
キーワード
主題Scheme Other
主題 Traction Method
キーワード
主題Scheme Other
主題 Material Derivative Method
キーワード
主題Scheme Other
主題 Adjoint Method
キーワード
主題Scheme Other
主題 Multiple Loading
抄録
内容記述 This paper presents a numerical shape optimization method for continua that minimizes some maximum local measure such as stress or displacement. A method of solving such min-max problems subject to a volume constraint is proposed. This method uses the Kreisselmeier-Steinhauser function to transpose local
functionals to global integral functionals so as to avoid non-differentiability. With this function, a multiple loading problem is recast as a single loading problem. The shape gradient functions used in the proposed traction method are derived theoretically using Lagrange multipliers and the material derivative method. Using the traction method, the optimum domain variation that reduces the objective functional is numerically and iteratively determined while maintaining boundary smoothness. Calculated results for two- and three-dimensional problems are presented to show the effectiveness and
practical utility of the proposed method for min-max shape design problems.
内容記述タイプ Abstract
出版者
出版者 日本機械学会
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
関連情報
関連タイプ isVersionOf
関連識別子
識別子タイプ URI
関連識別子 http://ci.nii.ac.jp/naid/110002965260/
ISSN
収録物識別子タイプ ISSN
収録物識別子 1344-7912
書誌情報 JSME international journal. Series A

巻 41, 号 1, p. 1-9, 発行日 1998-01-15
フォーマット
application/pdf
著者版フラグ
値 publisher
URI
識別子 http://hdl.handle.net/2237/12154
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 19:30:42.931601
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio