WEKO3
AND
アイテム
{"_buckets": {"deposit": "78260039-d0f6-44c9-9790-5f9fabb01712"}, "_deposit": {"id": "10786", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "10786"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00010786"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2009-05-18", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "103701", "bibliographicPageStart": "103701", "bibliographicVolumeNumber": "105,n.10", "bibliographic_titles": [{"bibliographic_title": "JOURNAL OF APPLIED PHYSICS"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Crystal structure and thermoelectric properties of Nb^5+- and Ln^3+-(rare earth: La^3+, Nd^3+, S^3+, and Gd^3+) doped SrO(SrTiO3)n (n=1,2) ceramics, which were fabricated by conventional hot-pressing, were measured to clarify the effects of Ti^4+- and Sr^2+-site substitution on the thermoelectric properties. The thermal conductivities are very close between the n=1 and 2 phases either doped with Nb5^+ or Ln^3+ and decreased by ~60% at room temperature and ~30% at 1000 K as compared to that of SrTiO3, which is likely due to an enhanced phonon scattering at the SrO/ (SrTiO3)n (n=1,2) interfaces. The density of states effective mass md *(1.8.2.4 m0) and consequently the Seebeck coefficient \\midS\\mid in Nb^5+-doped samples are fairly smaller than those reported for SrTiO3, which probably resulted from a deterioration of DOS due to the formation of the singly degenerate a1g (Ti3dxy) orbital as the conduction band bottom, which should be induced by the distortion of TiO6 octahedra in (SrTiO3)n layers. However, in the Ln^3+-doped SrO(SrTiO3)2, the TiO6 octahedra were found to be restored, in contrast to the Nb5^+-doped, with a gradually increasing O.Ti.O bond angle in the (100) plane at high temperatures, which would lead to the formation of triply degenerate Ti 3d-t2g (dxy, dyz, and dxz) orbitals to cause a significant enhancement in md*(7.5 m0 at 1000 K) and consequently in \\midS\\mid . Accordingly, the maximum dimensionless figure of merit ZT~0.24 obtained in 5%-Gd^3+-doped SrO(SrTiO3)2 at 1000 K is about 70% larger than that of Nb-doped SrO(SrTiO3)2 (ZT1000 ~K0.14).", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/12629"}, {"subitem_identifier_type": "DOI", "subitem_identifier_uri": "http://dx.doi.org/10.1063/1.3117943"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "American Institite of Physics"}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "Copyright (2009) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior per\u3000mission of the author and the American Institute of Physics."}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0021-8979", "subitem_source_identifier_type": "ISSN"}]}, "item_10_text_14": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Wang, Yifeng"}], "nameIdentifiers": [{"nameIdentifier": "32398", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Lee, Kyu Hyoung"}], "nameIdentifiers": [{"nameIdentifier": "32399", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Ohta, Hiromichi"}], "nameIdentifiers": [{"nameIdentifier": "32400", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Koumoto, Kunihito"}], "nameIdentifiers": [{"nameIdentifier": "32401", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-20"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "JApplPhys_105_103701.pdf", "filesize": [{"value": "1.1 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 1100000.0, "url": {"label": "JApplPhys_105_103701.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/10786/files/JApplPhys_105_103701.pdf"}, "version_id": "aaed0f0b-eb47-41b0-8d68-43065870b18e"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "ceramics", "subitem_subject_scheme": "Other"}, {"subitem_subject": "conduction bands", "subitem_subject_scheme": "Other"}, {"subitem_subject": "crystal structure", "subitem_subject_scheme": "Other"}, {"subitem_subject": "doping", "subitem_subject_scheme": "Other"}, {"subitem_subject": "effective mass", "subitem_subject_scheme": "Other"}, {"subitem_subject": "electronic density of states", "subitem_subject_scheme": "Other"}, {"subitem_subject": "gadolinium", "subitem_subject_scheme": "Other"}, {"subitem_subject": "hot pressing", "subitem_subject_scheme": "Other"}, {"subitem_subject": "interface phonons", "subitem_subject_scheme": "Other"}, {"subitem_subject": "lanthanum", "subitem_subject_scheme": "Other"}, {"subitem_subject": "neodymium", "subitem_subject_scheme": "Other"}, {"subitem_subject": "samarium", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Seebeck effect", "subitem_subject_scheme": "Other"}, {"subitem_subject": "strontium compounds", "subitem_subject_scheme": "Other"}, {"subitem_subject": "thermal conductivity", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1,2) ceramics", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1,2) ceramics"}]}, "item_type_id": "10", "owner": "1", "path": ["320/321/322"], "permalink_uri": "http://hdl.handle.net/2237/12629", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2010-01-21"}, "publish_date": "2010-01-21", "publish_status": "0", "recid": "10786", "relation": {}, "relation_version_is_last": true, "title": ["Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1,2) ceramics"], "weko_shared_id": null}
Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1,2) ceramics
http://hdl.handle.net/2237/12629
8d7517a6-822b-43cc-9c38-ef2da2fb142f
名前 / ファイル | ライセンス | アクション | |
---|---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2010-01-21 | |||||
タイトル | ||||||
タイトル | Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1,2) ceramics | |||||
著者 |
Wang, Yifeng
× Wang, Yifeng× Lee, Kyu Hyoung× Ohta, Hiromichi× Koumoto, Kunihito |
|||||
権利 | ||||||
権利情報 | Copyright (2009) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior per mission of the author and the American Institute of Physics. | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | ceramics | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | conduction bands | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | crystal structure | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | doping | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | effective mass | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | electronic density of states | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | gadolinium | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | hot pressing | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | interface phonons | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | lanthanum | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | neodymium | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | samarium | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Seebeck effect | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | strontium compounds | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | thermal conductivity | |||||
抄録 | ||||||
内容記述 | Crystal structure and thermoelectric properties of Nb^5+- and Ln^3+-(rare earth: La^3+, Nd^3+, S^3+, and Gd^3+) doped SrO(SrTiO3)n (n=1,2) ceramics, which were fabricated by conventional hot-pressing, were measured to clarify the effects of Ti^4+- and Sr^2+-site substitution on the thermoelectric properties. The thermal conductivities are very close between the n=1 and 2 phases either doped with Nb5^+ or Ln^3+ and decreased by ~60% at room temperature and ~30% at 1000 K as compared to that of SrTiO3, which is likely due to an enhanced phonon scattering at the SrO/ (SrTiO3)n (n=1,2) interfaces. The density of states effective mass md *(1.8.2.4 m0) and consequently the Seebeck coefficient \midS\mid in Nb^5+-doped samples are fairly smaller than those reported for SrTiO3, which probably resulted from a deterioration of DOS due to the formation of the singly degenerate a1g (Ti3dxy) orbital as the conduction band bottom, which should be induced by the distortion of TiO6 octahedra in (SrTiO3)n layers. However, in the Ln^3+-doped SrO(SrTiO3)2, the TiO6 octahedra were found to be restored, in contrast to the Nb5^+-doped, with a gradually increasing O.Ti.O bond angle in the (100) plane at high temperatures, which would lead to the formation of triply degenerate Ti 3d-t2g (dxy, dyz, and dxz) orbitals to cause a significant enhancement in md*(7.5 m0 at 1000 K) and consequently in \midS\mid . Accordingly, the maximum dimensionless figure of merit ZT~0.24 obtained in 5%-Gd^3+-doped SrO(SrTiO3)2 at 1000 K is about 70% larger than that of Nb-doped SrO(SrTiO3)2 (ZT1000 ~K0.14). | |||||
内容記述タイプ | Abstract | |||||
出版者 | ||||||
出版者 | American Institite of Physics | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプresource | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 0021-8979 | |||||
書誌情報 |
JOURNAL OF APPLIED PHYSICS 巻 105,n.10, p. 103701-103701, 発行日 2009-05-18 |
|||||
フォーマット | ||||||
application/pdf | ||||||
著者版フラグ | ||||||
値 | publisher | |||||
URI | ||||||
識別子 | http://hdl.handle.net/2237/12629 | |||||
識別子タイプ | HDL | |||||
URI | ||||||
識別子 | http://dx.doi.org/10.1063/1.3117943 | |||||
識別子タイプ | DOI |