ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "5fe90bef-48ec-4aa6-8ccb-95ee54d7857b"}, "_deposit": {"id": "18758", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "18758"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00018758"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2012-11", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "170", "bibliographicPageStart": "167", "bibliographic_titles": [{"bibliographic_title": "2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS)"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "The P300 speller is one of the BCI applications, which allows users to select letters just by thoughts. However, due to the difference of P300 in each person and with the passage of time, users are required to do machine learning every time before use (pre-training). This pre-training is a burden to users. This paper proposes an incremental learning using unknown data to reduce the training time. Consequently, this paper shows that the proposed method gives not only the reduction of the training time but also directly use of P300 speller without pre-training by using the data of last time.", "subitem_description_type": "Abstract"}]}, "item_10_description_5": {"attribute_name": "\u5185\u5bb9\u8a18\u8ff0", "attribute_value_mlt": [{"subitem_description": "2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS) (SCIS-ISIS 2012). November 20-24, 2012, Kobe, Japan", "subitem_description_type": "Other"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "DOI", "subitem_identifier_uri": "http://dx.doi.org/10.1109/SCIS-ISIS.2012.6505359"}, {"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/20854"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "IEEE"}]}, "item_10_relation_8": {"attribute_name": "ISBN", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "978-1-4673-2742-8", "subitem_relation_type_select": "ISBN"}}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "\u00a9 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "author"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Yokoi, Takanori"}], "nameIdentifiers": [{"nameIdentifier": "54717", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Yoshikawa, Tomohiro"}], "nameIdentifiers": [{"nameIdentifier": "54718", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Furuhashi, Takeshi"}], "nameIdentifiers": [{"nameIdentifier": "54719", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-21"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "45-Incremental_Learning_to_Reduce_the_Burden_of_Machine_Learning.pdf", "filesize": [{"value": "220.6 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 220600.0, "url": {"label": "45-Incremental_Learning_to_Reduce_the_Burden_of_Machine_Learning.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/18758/files/45-Incremental_Learning_to_Reduce_the_Burden_of_Machine_Learning.pdf"}, "version_id": "9bdc68aa-1fc6-4437-af4d-da44e9b2e1c3"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Incremental learning to reduce the burden of machine learning for P300 speller", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Incremental learning to reduce the burden of machine learning for P300 speller"}]}, "item_type_id": "10", "owner": "1", "path": ["320/502/503"], "permalink_uri": "http://hdl.handle.net/2237/20854", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2014-11-21"}, "publish_date": "2014-11-21", "publish_status": "0", "recid": "18758", "relation": {}, "relation_version_is_last": true, "title": ["Incremental learning to reduce the burden of machine learning for P300 speller"], "weko_shared_id": null}
  1. B200 工学部/工学研究科
  2. B200e 会議資料
  3. 国際会議

Incremental learning to reduce the burden of machine learning for P300 speller

http://hdl.handle.net/2237/20854
284eff4c-c110-48c7-84ad-4f53e05029f2
名前 / ファイル ライセンス アクション
45-Incremental_Learning_to_Reduce_the_Burden_of_Machine_Learning.pdf 45-Incremental_Learning_to_Reduce_the_Burden_of_Machine_Learning.pdf (220.6 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2014-11-21
タイトル
タイトル Incremental learning to reduce the burden of machine learning for P300 speller
著者 Yokoi, Takanori

× Yokoi, Takanori

WEKO 54717

Yokoi, Takanori

Search repository
Yoshikawa, Tomohiro

× Yoshikawa, Tomohiro

WEKO 54718

Yoshikawa, Tomohiro

Search repository
Furuhashi, Takeshi

× Furuhashi, Takeshi

WEKO 54719

Furuhashi, Takeshi

Search repository
権利
権利情報 © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
抄録
内容記述 The P300 speller is one of the BCI applications, which allows users to select letters just by thoughts. However, due to the difference of P300 in each person and with the passage of time, users are required to do machine learning every time before use (pre-training). This pre-training is a burden to users. This paper proposes an incremental learning using unknown data to reduce the training time. Consequently, this paper shows that the proposed method gives not only the reduction of the training time but also directly use of P300 speller without pre-training by using the data of last time.
内容記述タイプ Abstract
内容記述
内容記述 2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS) (SCIS-ISIS 2012). November 20-24, 2012, Kobe, Japan
内容記述タイプ Other
出版者
出版者 IEEE
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
ISBN
関連識別子
識別子タイプ ISBN
関連識別子 978-1-4673-2742-8
書誌情報 2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS)

p. 167-170, 発行日 2012-11
著者版フラグ
値 author
URI
識別子 http://dx.doi.org/10.1109/SCIS-ISIS.2012.6505359
識別子タイプ DOI
URI
識別子 http://hdl.handle.net/2237/20854
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 16:31:42.060242
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio