Item type |
itemtype_ver1(1) |
公開日 |
2022-05-09 |
タイトル |
|
|
タイトル |
Electrostatic–magnetic hybrid ion acceleration for high-thrust-density operation |
|
言語 |
en |
著者 |
Ichihara, D.
Nakano, R.
Nakamura, Y.
Kinefuchi, K.
Sasoh, A.
|
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
権利 |
|
|
言語 |
en |
|
権利情報 |
Copyright 2021 Author(s). Published under an exclusive license by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.The following article appeared in (Journal of Applied Physics 130, 223303 (2021)) and may be found at (https://doi.org/10.1063/5.0066083). |
内容記述 |
|
|
内容記述タイプ |
Abstract |
|
内容記述 |
To achieve high-thrust-density operation, we propose electrostatic–magnetic hybrid ion acceleration in which the empirical thrust density limit of the electrostatic acceleration is surpassed without violent plasma oscillation by combing the collisional momentum transfer mechanism, which is the ion acceleration mechanism of the electromagnetic acceleration. To achieve hybrid ion acceleration, we experimentally obtained two design criteria: one near anode propellant injection and another at the on-axis hollow cathode location. The thrust characteristics of three thrusters composed of a slowly diverging magnetic field between an on-axis hollow cathode and a coaxially set ring anode were examined. By injecting xenon propellant along the anode inner surface, the electron impact ionization process was enhanced, and generated ions are electrostatically accelerated through the radial-inward potential gradient perpendicular to the axial magnetic lines of force. The hybrid ion acceleration characteristics were obtained only if these two criteria were satisfied and the obtained thrust was consistent with the thrust formula derived for steady-state, quasi-neutral plasma flows. In addition to the criteria, strengthening the magnetic field and enhancing the propellant mass flux were effective for improving thrust density without deteriorating thrust efficiency. Among the experimental conditions in this study, the maximum thrust density was 70 N/m^2 with an anode specific impulse of 1200 s, which cannot be achieved in a purely electrostatic thruster with thrust density 6.3 times than that of a typical Hall thruster. |
|
言語 |
en |
出版者 |
|
|
出版者 |
AIP Publishing |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
出版タイプ |
|
|
出版タイプ |
VoR |
|
出版タイプResource |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
関連情報 |
|
|
関連タイプ |
isVersionOf |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
https://doi.org/10.1063/5.0066083 |
収録物識別子 |
|
|
収録物識別子タイプ |
PISSN |
|
収録物識別子 |
0021-8979 |
書誌情報 |
en : Journal of Applied Physics
巻 130,
号 22,
p. 223303,
発行日 2021-12-14
|
ファイル公開日 |
|
|
日付 |
2022-12-14 |
|
日付タイプ |
Available |