WEKO3
アイテム
{"_buckets": {"deposit": "51ed87cb-ff42-486e-a0b7-78626a01cb5a"}, "_deposit": {"id": "21186", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "21186"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00021186", "sets": ["1341"]}, "author_link": ["61180"], "item_11_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2015-11-04", "bibliographicIssueDateType": "Issued"}}]}, "item_11_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "有理数を高校までとは全く違った視点から特に幾何学的に考察する方法を学ぶ。具体的には連分数、フォードの円、双曲幾何の順に解説する。連分数とは有理数を入れ子状の分数で表したものである。計算には向かないが面白い性質を多く持っており、有理数や無理数に対する新たな見地が開けるだろう。次に各有理数に対応したフォードの円を学ぶ。このフォードの円を使うと、有理数同士の関係が幾何学的に理解できるようになる。またこのフォードの円は連分数と大変相性がよいのも特色である。以上の有理数とフォードの円の対応は、実は双曲幾何学を通してみると自然に理解できるものとなっている。講義の終盤ではこの双曲幾何の解説をする。双曲幾何とは通常のユークリッド幾何とは違い、「平行線の公理」を仮定しないで成り立つ幾何学である。この双曲幾何を円の反転を用いて初等的に説明する。", "subitem_description_language": "ja", "subitem_description_type": "Abstract"}]}, "item_11_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/23325"}]}, "item_11_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "名古屋大学オープンコースウェア委員会", "subitem_publisher_language": "ja"}]}, "item_11_relation_43": {"attribute_name": "関連情報", "attribute_value_mlt": [{"subitem_relation_type": "isVersionOf", "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://ocw.nagoya-u.jp/courses/0504-数学展望-I-2015/", "subitem_relation_type_select": "URI"}}]}, "item_11_rights_12": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "本資料は、名古屋大学の教員糸健太郎によって作成され、名大の授業Webサイトに掲載された「数学展望 I」(2015)から講義資料のみを登録したものです。 Copyright(C)2015 糸健太郎", "subitem_rights_language": "ja"}]}, "item_11_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "糸, 健太郎", "creatorNameLang": "ja"}], "nameIdentifiers": [{"nameIdentifier": "61180", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-21"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "LectureNote.pdf", "filesize": [{"value": "1.2 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 1200000.0, "url": {"label": "LectureNote.pdf", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/21186/files/LectureNote.pdf"}, "version_id": "5a17bfd0-909d-4ba6-8b2b-918ff8f9c376"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "learning object", "resourceuri": "http://purl.org/coar/resource_type/c_e059"}]}, "item_title": "数学展望 I", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "数学展望 I", "subitem_title_language": "ja"}]}, "item_type_id": "11", "owner": "1", "path": ["1341"], "permalink_uri": "http://hdl.handle.net/2237/23325", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2015-12-16"}, "publish_date": "2015-12-16", "publish_status": "0", "recid": "21186", "relation": {}, "relation_version_is_last": true, "title": ["数学展望 I"], "weko_shared_id": -1}
数学展望 I
http://hdl.handle.net/2237/23325
http://hdl.handle.net/2237/233252a21f6fc-dab8-4dac-81df-2c680d3b6fda
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 教材 / Learning Material(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2015-12-16 | |||||
タイトル | ||||||
タイトル | 数学展望 I | |||||
言語 | ja | |||||
著者 |
糸, 健太郎
× 糸, 健太郎 |
|||||
アクセス権 | ||||||
アクセス権 | open access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||
権利 | ||||||
言語 | ja | |||||
権利情報 | 本資料は、名古屋大学の教員糸健太郎によって作成され、名大の授業Webサイトに掲載された「数学展望 I」(2015)から講義資料のみを登録したものです。 Copyright(C)2015 糸健太郎 | |||||
抄録 | ||||||
内容記述 | 有理数を高校までとは全く違った視点から特に幾何学的に考察する方法を学ぶ。具体的には連分数、フォードの円、双曲幾何の順に解説する。連分数とは有理数を入れ子状の分数で表したものである。計算には向かないが面白い性質を多く持っており、有理数や無理数に対する新たな見地が開けるだろう。次に各有理数に対応したフォードの円を学ぶ。このフォードの円を使うと、有理数同士の関係が幾何学的に理解できるようになる。またこのフォードの円は連分数と大変相性がよいのも特色である。以上の有理数とフォードの円の対応は、実は双曲幾何学を通してみると自然に理解できるものとなっている。講義の終盤ではこの双曲幾何の解説をする。双曲幾何とは通常のユークリッド幾何とは違い、「平行線の公理」を仮定しないで成り立つ幾何学である。この双曲幾何を円の反転を用いて初等的に説明する。 | |||||
言語 | ja | |||||
内容記述タイプ | Abstract | |||||
出版者 | ||||||
言語 | ja | |||||
出版者 | 名古屋大学オープンコースウェア委員会 | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_e059 | |||||
タイプ | learning object | |||||
関連情報 | ||||||
関連タイプ | isVersionOf | |||||
識別子タイプ | URI | |||||
関連識別子 | https://ocw.nagoya-u.jp/courses/0504-数学展望-I-2015/ | |||||
書誌情報 |
発行日 2015-11-04 |
|||||
著者版フラグ | ||||||
値 | publisher | |||||
URI | ||||||
識別子 | http://hdl.handle.net/2237/23325 | |||||
識別子タイプ | HDL |