ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "21a33b80-c3df-4810-b4ba-1bea0da0be05"}, "_deposit": {"id": "21691", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "21691"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00021691"}, "item_10_alternative_title_19": {"attribute_name": "\u305d\u306e\u4ed6\u306e\u8a00\u8a9e\u306e\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_alternative_title": "Extraction and Recognition of Repetitive Cooking Motion Segments in Cooking Video by Periodicity Analysis of CHLAC Feature"}]}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2011-02-28", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "457", "bibliographicPageEnd": "66", "bibliographicPageStart": "61", "bibliographicVolumeNumber": "110", "bibliographic_titles": [{"bibliographic_title": "\u96fb\u5b50\u60c5\u5831\u901a\u4fe1\u5b66\u4f1a\u6280\u8853\u7814\u7a76\u5831\u544a. MVE, \u30de\u30eb\u30c1\u30e1\u30c7\u30a3\u30a2\u30fb\u4eee\u60f3\u74b0\u5883\u57fa\u790e"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "\u672c\u5831\u544a\u3067\u306f,\u6599\u7406\u6620\u50cf\u304b\u3089\u300c\u5207\u308b\u300d\u3084\u300c\u6df7\u305c\u308b\u300d\u3068\u3044\u3063\u305f\u7e70\u308a\u8fd4\u3057\u52d5\u4f5c\u304c\u884c\u308f\u308c\u3066\u3044\u308b\u6620\u50cf\u533a\u9593\u3092\u62bd\u51fa\u3057,\u305d\u306e\u533a\u9593\u306e\u8abf\u7406\u52d5\u4f5c\u3092\u8b58\u5225\u3059\u308b\u624b\u6cd5\u3092\u63d0\u6848\u3059\u308b.\u7e70\u308a\u8fd4\u3057\u52d5\u4f5c\u533a\u9593\u306e\u62bd\u51fa\u306b\u306f,\u6620\u50cf\u30d5\u30ec\u30fc\u30e0\u4e2d\u306e\u52d5\u4f5c\u306e\u4f4d\u7f6e\u306b\u4f9d\u5b58\u3057\u306a\u3044\u7279\u5fb4\u91cf\u3068\u4f9d\u5b58\u3059\u308b\u7279\u5fb4\u91cf\u3068\u3044\u30462\u7a2e\u985e\u306e\u7279\u5fb4\u91cf\u3092\u7528\u3044\u308b.\u3053\u308c\u306b\u3088\u308a,\u7e70\u308a\u8fd4\u3057\u52d5\u4f5c\u306e\u632f\u52d5\u4e2d\u5fc3\u304c\u79fb\u52d5\u3059\u308b\u52d5\u4f5c\u304a\u3088\u3073\u4e00\u5b9a\u3067\u3042\u308b\u52d5\u4f5c\u306e\u4e21\u65b9\u306b\u5bfe\u3057\u3066,\u9ad8\u3044\u62bd\u51fa\u7cbe\u5ea6\u3092\u7dad\u6301\u3059\u308b.\u305d\u3057\u3066,\u3053\u308c\u3089\u7279\u5fb4\u91cf\u306e\u5468\u671f\u6027\u3092\u30d5\u30fc\u30ea\u30a8\u5909\u63db\u306b\u3088\u308a\u89e3\u6790\u3057,\u533a\u9593\u62bd\u51fa\u3092\u884c\u3046.\u4e00\u65b9,\u8abf\u7406\u52d5\u4f5c\u306e\u8b58\u5225\u3067\u306f,\u6620\u50cf\u30d5\u30ec\u30fc\u30e0\u4e2d\u3067\u8abf\u7406\u52d5\u4f5c\u304c\u884c\u308f\u308c\u308b\u4f4d\u7f6e\u304c\u591a\u69d8\u3067\u3042\u308b\u3053\u3068\u3092\u8003\u616e\u3057,\u52d5\u4f5c\u306e\u4f4d\u7f6e\u306b\u4f9d\u5b58\u3057\u306a\u3044\u7279\u5fb4\u91cf\u3092\u7528\u3044\u308b.\u7e70\u308a\u8fd4\u3057\u52d5\u4f5c\u533a\u9593\u62bd\u51fa\u306e\u5b9f\u9a13\u3067\u306f0.78,\u8abf\u7406\u52d5\u4f5c\u8b58\u5225\u306e\u5b9f\u9a13\u3067\u306f0.77\u306e\u7cbe\u5ea6\u304c\u5f97\u3089\u308c,\u3053\u306e\u3053\u3068\u304b\u3089\u672c\u624b\u6cd5\u306e\u6709\u52b9\u6027\u3092\u78ba\u8a8d\u3057\u305f.This paper proposes a method for extracting segments that contain repetitive cooking motions such as \"cutting\" and \"mixing\", from cooking videos, and for recognizing the cooking motions in the segments. The proposed method extracts repetitive cooking motion segments by two types of features; One is a feature that depends on the location of the motion within video frames and the other is a feature invariant to the location. As a result, high identification accuracy is expected to be maintained on both a repetitive motion whose oscillation center moves along time and a repetitive motion with a constant oscillation center. Next, the proposed method analyses the periodicity of these feature values by Fourier transform and extracts the segments. On the other hand, in cooking motion classification, considering that the location of the cooking motion within video frames is various, the proposed method classifies the repetitive cooking motion segments by using a feature value invariant to the location of the motion within video frames. In an experiment for extracting segments that contain repetitive cooking motions, the method obtained an accuracy of 0.78, and for cooking motion classification, an accuracy of 0.77 was obtained. From these results, the effectiveness of our method was shown.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "URI", "subitem_identifier_uri": "http://ci.nii.ac.jp/naid/110008689982/"}, {"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/23840"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u4e00\u822c\u793e\u56e3\u6cd5\u4eba\u96fb\u5b50\u60c5\u5831\u901a\u4fe1\u5b66\u4f1a"}]}, "item_10_relation_40": {"attribute_name": "\u30b7\u30ea\u30fc\u30ba", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "IEICE Technical Report;IE2010-156, MVE2010-144"}]}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "(c)\u4e00\u822c\u793e\u56e3\u6cd5\u4eba\u96fb\u5b50\u60c5\u5831\u901a\u4fe1\u5b66\u4f1a \u672c\u6587\u30c7\u30fc\u30bf\u306f\u5b66\u5354\u4f1a\u306e\u8a31\u8afe\u306b\u57fa\u3065\u304dCiNii\u304b\u3089\u8907\u88fd\u3057\u305f\u3082\u306e\u3067\u3042\u308b"}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0913-5685", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u4e45\u539f, \u5353"}], "nameIdentifiers": [{"nameIdentifier": "64219", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u51fa\u53e3, \u5927\u8f14"}], "nameIdentifiers": [{"nameIdentifier": "64220", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u9ad8\u6a4b, \u53cb\u548c"}], "nameIdentifiers": [{"nameIdentifier": "64221", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u4e95\u624b, \u4e00\u90ce"}], "nameIdentifiers": [{"nameIdentifier": "64222", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u6751\u702c, \u6d0b"}], "nameIdentifiers": [{"nameIdentifier": "64223", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "KUHARA, Taku"}], "nameIdentifiers": [{"nameIdentifier": "64224", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "DEGUCHI, Daisuke"}], "nameIdentifiers": [{"nameIdentifier": "64225", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "TAKAHASHI, Tomokazu"}], "nameIdentifiers": [{"nameIdentifier": "64226", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "IDE, Ichiro"}], "nameIdentifiers": [{"nameIdentifier": "64227", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "MURASE, Hiroshi"}], "nameIdentifiers": [{"nameIdentifier": "64228", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-21"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "110008689982.pdf", "filesize": [{"value": "1.1 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 1100000.0, "url": {"label": "110008689982.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/21691/files/110008689982.pdf"}, "version_id": "a0be0953-0cf3-455c-828b-fd0f3530b5a8"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "\u6599\u7406\u6620\u50cf", "subitem_subject_scheme": "Other"}, {"subitem_subject": "\u52d5\u4f5c\u89e3\u6790", "subitem_subject_scheme": "Other"}, {"subitem_subject": "CHLAC\u7279\u5fae", "subitem_subject_scheme": "Other"}, {"subitem_subject": "\u30d5\u30fc\u30ea\u30a8\u89e3\u6790", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Cooking video", "subitem_subject_scheme": "Other"}, {"subitem_subject": "motion analysis", "subitem_subject_scheme": "Other"}, {"subitem_subject": "CHLAC feature", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Fourier analysis", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "CHLAC\u7279\u5fb4\u306e\u5468\u671f\u6027\u89e3\u6790\u306b\u3088\u308b\u6599\u7406\u6620\u50cf\u4e2d\u306e\u7e70\u308a\u8fd4\u3057\u8abf\u7406\u52d5\u4f5c\u533a\u9593\u306e\u62bd\u51fa\u3068\u8b58\u5225(\u4e94\u611f\u30e1\u30c7\u30a3\u30a2\u306e\u54c1\u8cea,\u30b3\u30df\u30e5\u30cb\u30b1\u30fc\u30b7\u30e7\u30f3\u30c7\u30b6\u30a4\u30f3,\u753b\u50cf\u7b26\u53f7\u5316,\u98df\u30e1\u30c7\u30a3\u30a2,\u4e00\u822c)", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "CHLAC\u7279\u5fb4\u306e\u5468\u671f\u6027\u89e3\u6790\u306b\u3088\u308b\u6599\u7406\u6620\u50cf\u4e2d\u306e\u7e70\u308a\u8fd4\u3057\u8abf\u7406\u52d5\u4f5c\u533a\u9593\u306e\u62bd\u51fa\u3068\u8b58\u5225(\u4e94\u611f\u30e1\u30c7\u30a3\u30a2\u306e\u54c1\u8cea,\u30b3\u30df\u30e5\u30cb\u30b1\u30fc\u30b7\u30e7\u30f3\u30c7\u30b6\u30a4\u30f3,\u753b\u50cf\u7b26\u53f7\u5316,\u98df\u30e1\u30c7\u30a3\u30a2,\u4e00\u822c)"}]}, "item_type_id": "10", "owner": "1", "path": ["312/313/314"], "permalink_uri": "http://hdl.handle.net/2237/23840", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2016-03-15"}, "publish_date": "2016-03-15", "publish_status": "0", "recid": "21691", "relation": {}, "relation_version_is_last": true, "title": ["CHLAC\u7279\u5fb4\u306e\u5468\u671f\u6027\u89e3\u6790\u306b\u3088\u308b\u6599\u7406\u6620\u50cf\u4e2d\u306e\u7e70\u308a\u8fd4\u3057\u8abf\u7406\u52d5\u4f5c\u533a\u9593\u306e\u62bd\u51fa\u3068\u8b58\u5225(\u4e94\u611f\u30e1\u30c7\u30a3\u30a2\u306e\u54c1\u8cea,\u30b3\u30df\u30e5\u30cb\u30b1\u30fc\u30b7\u30e7\u30f3\u30c7\u30b6\u30a4\u30f3,\u753b\u50cf\u7b26\u53f7\u5316,\u98df\u30e1\u30c7\u30a3\u30a2,\u4e00\u822c)"], "weko_shared_id": null}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500a 雑誌掲載論文
  3. 学術雑誌

CHLAC特徴の周期性解析による料理映像中の繰り返し調理動作区間の抽出と識別(五感メディアの品質,コミュニケーションデザイン,画像符号化,食メディア,一般)

http://hdl.handle.net/2237/23840
43bd2ea0-f11a-44bc-b3ba-0cc7f69eb9f5
名前 / ファイル ライセンス アクション
110008689982.pdf 110008689982.pdf (1.1 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2016-03-15
タイトル
タイトル CHLAC特徴の周期性解析による料理映像中の繰り返し調理動作区間の抽出と識別(五感メディアの品質,コミュニケーションデザイン,画像符号化,食メディア,一般)
その他のタイトル
その他のタイトル Extraction and Recognition of Repetitive Cooking Motion Segments in Cooking Video by Periodicity Analysis of CHLAC Feature
著者 久原, 卓

× 久原, 卓

WEKO 64219

久原, 卓

Search repository
出口, 大輔

× 出口, 大輔

WEKO 64220

出口, 大輔

Search repository
高橋, 友和

× 高橋, 友和

WEKO 64221

高橋, 友和

Search repository
井手, 一郎

× 井手, 一郎

WEKO 64222

井手, 一郎

Search repository
村瀬, 洋

× 村瀬, 洋

WEKO 64223

村瀬, 洋

Search repository
KUHARA, Taku

× KUHARA, Taku

WEKO 64224

KUHARA, Taku

Search repository
DEGUCHI, Daisuke

× DEGUCHI, Daisuke

WEKO 64225

DEGUCHI, Daisuke

Search repository
TAKAHASHI, Tomokazu

× TAKAHASHI, Tomokazu

WEKO 64226

TAKAHASHI, Tomokazu

Search repository
IDE, Ichiro

× IDE, Ichiro

WEKO 64227

IDE, Ichiro

Search repository
MURASE, Hiroshi

× MURASE, Hiroshi

WEKO 64228

MURASE, Hiroshi

Search repository
権利
権利情報 (c)一般社団法人電子情報通信学会 本文データは学協会の許諾に基づきCiNiiから複製したものである
キーワード
主題Scheme Other
主題 料理映像
キーワード
主題Scheme Other
主題 動作解析
キーワード
主題Scheme Other
主題 CHLAC特微
キーワード
主題Scheme Other
主題 フーリエ解析
キーワード
主題Scheme Other
主題 Cooking video
キーワード
主題Scheme Other
主題 motion analysis
キーワード
主題Scheme Other
主題 CHLAC feature
キーワード
主題Scheme Other
主題 Fourier analysis
抄録
内容記述 本報告では,料理映像から「切る」や「混ぜる」といった繰り返し動作が行われている映像区間を抽出し,その区間の調理動作を識別する手法を提案する.繰り返し動作区間の抽出には,映像フレーム中の動作の位置に依存しない特徴量と依存する特徴量という2種類の特徴量を用いる.これにより,繰り返し動作の振動中心が移動する動作および一定である動作の両方に対して,高い抽出精度を維持する.そして,これら特徴量の周期性をフーリエ変換により解析し,区間抽出を行う.一方,調理動作の識別では,映像フレーム中で調理動作が行われる位置が多様であることを考慮し,動作の位置に依存しない特徴量を用いる.繰り返し動作区間抽出の実験では0.78,調理動作識別の実験では0.77の精度が得られ,このことから本手法の有効性を確認した.This paper proposes a method for extracting segments that contain repetitive cooking motions such as "cutting" and "mixing", from cooking videos, and for recognizing the cooking motions in the segments. The proposed method extracts repetitive cooking motion segments by two types of features; One is a feature that depends on the location of the motion within video frames and the other is a feature invariant to the location. As a result, high identification accuracy is expected to be maintained on both a repetitive motion whose oscillation center moves along time and a repetitive motion with a constant oscillation center. Next, the proposed method analyses the periodicity of these feature values by Fourier transform and extracts the segments. On the other hand, in cooking motion classification, considering that the location of the cooking motion within video frames is various, the proposed method classifies the repetitive cooking motion segments by using a feature value invariant to the location of the motion within video frames. In an experiment for extracting segments that contain repetitive cooking motions, the method obtained an accuracy of 0.78, and for cooking motion classification, an accuracy of 0.77 was obtained. From these results, the effectiveness of our method was shown.
内容記述タイプ Abstract
出版者
出版者 一般社団法人電子情報通信学会
言語
言語 jpn
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
ISSN
収録物識別子タイプ ISSN
収録物識別子 0913-5685
書誌情報 電子情報通信学会技術研究報告. MVE, マルチメディア・仮想環境基礎

巻 110, 号 457, p. 61-66, 発行日 2011-02-28
著者版フラグ
値 publisher
シリーズ
関連名称
関連名称 IEICE Technical Report;IE2010-156, MVE2010-144
URI
識別子 http://ci.nii.ac.jp/naid/110008689982/
識別子タイプ URI
URI
識別子 http://hdl.handle.net/2237/23840
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 15:15:39.372324
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio