WEKO3
アイテム
{"_buckets": {"deposit": "728b7ea2-15f0-45aa-afd3-c7722dac67d6"}, "_deposit": {"id": "22973", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "22973"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00022973", "sets": ["675"]}, "author_link": ["67837", "67838", "67839"], "item_10_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2016-08", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "66", "bibliographicPageStart": "54", "bibliographicVolumeNumber": "47", "bibliographic_titles": [{"bibliographic_title": "Transportation Research Part D: Transport and Environment", "bibliographic_titleLang": "en"}]}]}, "item_10_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "In this research, a Bayesian network (BN) approach is proposed to model the car use behavior of drivers by time of day and to analyze its relationship with driver and car characteristics. The proposed BN model can be categorized as a tree-augmented naive (TAN) Bayesian network. A latent class variable is included in this model to describe the unobserved heterogeneity of drivers. Both the structure and the parameters are learned from the dataset, which is extracted from GPS data collected in Toyota City, Japan. Based on inferences and evidence sensitivity analysis using the estimated TAN model, the effects of each single observed characteristic on car use measures are tested and found to be significant. The features of each category of the latent class are also analyzed. By testing the effect of each car use measure on every other measure, it is found that the correlations between car use measures are significant and should be considered in modeling car use behavior.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "DOI", "subitem_identifier_uri": "http://dx.doi.org/10.1016/j.trd.2016.04.011"}, {"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/25154"}]}, "item_10_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Elsevier", "subitem_publisher_language": "en"}]}, "item_10_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type": "isVersionOf", "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1016/j.trd.2016.04.011", "subitem_relation_type_select": "DOI"}}]}, "item_10_rights_12": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/", "subitem_rights_language": "en"}]}, "item_10_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "author"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1361-9209", "subitem_source_identifier_type": "PISSN"}]}, "item_1615787544753": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_ab4af688f83e57aa", "subitem_version_type": "AM"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Li, Dawei", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "67837", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Miwa, Tomio", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "67838", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Morikawa, Takayuki", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "67839", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-08-01"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Li_Miwa_Morikawa_partD2016.pdf", "filesize": [{"value": "467.2 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 467200.0, "url": {"label": "Li_Miwa_Morikawa_partD2016.pdf ファイル公開:2018/08/01", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/22973/files/Li_Miwa_Morikawa_partD2016.pdf"}, "version_id": "5e0eff74-5e55-4ef3-8d3a-d1b89a4204c6"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Car use", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Bayesian networks", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Latent class", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Machine learning", "subitem_subject_scheme": "Other"}, {"subitem_subject": "GPS data", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Modeling time-of-day car use behavior: A Bayesian network approach", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Modeling time-of-day car use behavior: A Bayesian network approach", "subitem_title_language": "en"}]}, "item_type_id": "10", "owner": "1", "path": ["675"], "permalink_uri": "http://hdl.handle.net/2237/25154", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2016-12-07"}, "publish_date": "2016-12-07", "publish_status": "0", "recid": "22973", "relation": {}, "relation_version_is_last": true, "title": ["Modeling time-of-day car use behavior: A Bayesian network approach"], "weko_shared_id": -1}
Modeling time-of-day car use behavior: A Bayesian network approach
http://hdl.handle.net/2237/25154
http://hdl.handle.net/2237/251544fea748e-9724-49c8-960f-3fb00774b22f
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2016-12-07 | |||||
タイトル | ||||||
タイトル | Modeling time-of-day car use behavior: A Bayesian network approach | |||||
言語 | en | |||||
著者 |
Li, Dawei
× Li, Dawei× Miwa, Tomio× Morikawa, Takayuki |
|||||
アクセス権 | ||||||
アクセス権 | open access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||
権利 | ||||||
言語 | en | |||||
権利情報 | © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Car use | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Bayesian networks | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Latent class | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Machine learning | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | GPS data | |||||
抄録 | ||||||
内容記述 | In this research, a Bayesian network (BN) approach is proposed to model the car use behavior of drivers by time of day and to analyze its relationship with driver and car characteristics. The proposed BN model can be categorized as a tree-augmented naive (TAN) Bayesian network. A latent class variable is included in this model to describe the unobserved heterogeneity of drivers. Both the structure and the parameters are learned from the dataset, which is extracted from GPS data collected in Toyota City, Japan. Based on inferences and evidence sensitivity analysis using the estimated TAN model, the effects of each single observed characteristic on car use measures are tested and found to be significant. The features of each category of the latent class are also analyzed. By testing the effect of each car use measure on every other measure, it is found that the correlations between car use measures are significant and should be considered in modeling car use behavior. | |||||
言語 | en | |||||
内容記述タイプ | Abstract | |||||
出版者 | ||||||
言語 | en | |||||
出版者 | Elsevier | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプresource | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
出版タイプ | ||||||
出版タイプ | AM | |||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa | |||||
DOI | ||||||
関連タイプ | isVersionOf | |||||
識別子タイプ | DOI | |||||
関連識別子 | https://doi.org/10.1016/j.trd.2016.04.011 | |||||
ISSN | ||||||
収録物識別子タイプ | PISSN | |||||
収録物識別子 | 1361-9209 | |||||
書誌情報 |
en : Transportation Research Part D: Transport and Environment 巻 47, p. 54-66, 発行日 2016-08 |
|||||
著者版フラグ | ||||||
値 | author | |||||
URI | ||||||
識別子 | http://dx.doi.org/10.1016/j.trd.2016.04.011 | |||||
識別子タイプ | DOI | |||||
URI | ||||||
識別子 | http://hdl.handle.net/2237/25154 | |||||
識別子タイプ | HDL |