ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "6475c826-a88e-4092-a78c-07638bbec312"}, "_deposit": {"id": "2430", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "2430"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00002430", "sets": ["402"]}, "item_9_alternative_title_19": {"attribute_name": "その他の言語のタイトル", "attribute_value_mlt": [{"subitem_alternative_title": "Hierarchical Principal Component Analysis of Multiset-Multigroup Data"}]}, "item_9_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1991-12-25", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "166", "bibliographicPageStart": "155", "bibliographicVolumeNumber": "38", "bibliographic_titles": [{"bibliographic_title": "名古屋大學教育學部紀要. 教育心理学科"}]}]}, "item_9_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Consider a data matrix Z, which is of the form : variables×subjects, and it can be partitioned into m sets of rows and g groups of columns. Z can be seen as an m×g super matrix, the elements of which are p_k×N_s matrices Z_\u003cks\u003e\u0027s (k=1,…, m; s=1,…, g). Assume that rows of Z_\u003cks\u003e have zero mean for each group, and have unit variance across all the groups. Let us call the data which can be arranged as Z multiset-multigroup one. This paper proposed a method for component analysis of multiset-multigroup data. The basic model is written as Z_\u003cks\u003e=A_kC_\u003cks\u003eG_s+E_\u003cks\u003e, k=1,…, m, (1) s=1,…, g; where A_k is the p_k×q_k first order loading matrix for variables of k-th sets, C_\u003cks\u003e is the q_k×r_s second order loading matrix of s-th group on k-th first order components which are defined as F_\u003cks\u003e≡C_\u003cks\u003eG_s, (2) and G_s is the r_s×N_s second order component score matrix for s-th group; E_\u003cks\u003e denotes the p_k×N_s residual matrix. The basic model is a natural extension of Kroonenberg \u0026 de Leeuw (1977)\u0027s TUCKER 2 model for three-mode data which can be written as Z_k=AC_kG+E_k, k=1,…, m, The criterion to be minimized is [numerical formula] under the constraints [numerical formula] and, G_s\u003cG\u0027\u003e_s/N_s=I, s=1,…, g, (5) An alternating least squares algorithm, which is also a slight modification of TUCKALS 2 solving TUCKER 2 problem, is derived and it is adapted to handle the data with large N_s\u0027s. One of the most distinct feature of the output of this method is that the first ordr loading matrices can be interpreted as correlation matrices between variables and first order components such as [numerical formula] This hierarchical component model is not only able to explain the data more parsimoniously than individual analysis of each element matrix but also more sensitive to the group differences of loadings than analysis of all groups as a whole. An application for the data with two sets-Peer and Self ratings, and two groups-males and females was demonstrated as an illustrative example.", "subitem_description_type": "Abstract"}]}, "item_9_description_5": {"attribute_name": "内容記述", "attribute_value_mlt": [{"subitem_description": "国立情報学研究所で電子化したコンテンツを使用している。", "subitem_description_type": "Other"}]}, "item_9_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/3853"}]}, "item_9_identifier_registration": {"attribute_name": "ID登録", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.18999/bulfep.38.155", "subitem_identifier_reg_type": "JaLC"}]}, "item_9_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "名古屋大学教育学部"}]}, "item_9_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_9_source_id_7": {"attribute_name": "ISSN(print)", "attribute_value_mlt": [{"subitem_source_identifier": "03874796", "subitem_source_identifier_type": "ISSN"}]}, "item_9_text_14": {"attribute_name": "フォーマット", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "村上, 隆"}], "nameIdentifiers": [{"nameIdentifier": "6690", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "MURAKAMI, Takashi"}], "nameIdentifiers": [{"nameIdentifier": "6691", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-16"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "KJ00000137379.pdf", "filesize": [{"value": "730.7 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 730700.0, "url": {"label": "KJ00000137379.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/2430/files/KJ00000137379.pdf"}, "version_id": "28970909-63bc-4174-b530-0e96be87decf"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "\u003c原著\u003e多集合-多群データの階層的主成分分析", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "\u003c原著\u003e多集合-多群データの階層的主成分分析"}]}, "item_type_id": "9", "owner": "1", "path": ["402"], "permalink_uri": "https://doi.org/10.18999/bulfep.38.155", "pubdate": {"attribute_name": "公開日", "attribute_value": "2006-01-06"}, "publish_date": "2006-01-06", "publish_status": "0", "recid": "2430", "relation": {}, "relation_version_is_last": true, "title": ["\u003c原著\u003e多集合-多群データの階層的主成分分析"], "weko_shared_id": null}
  1. A200 教育学部/教育発達科学研究科
  2. A200b 紀要
  3. 名古屋大學教育學部紀要. 教育心理学科
  4. 38

<原著>多集合-多群データの階層的主成分分析

https://doi.org/10.18999/bulfep.38.155
https://doi.org/10.18999/bulfep.38.155
d09749f1-b43f-4931-a9c5-682735cf1cbf
名前 / ファイル ライセンス アクション
KJ00000137379.pdf KJ00000137379.pdf (730.7 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2006-01-06
タイトル
タイトル <原著>多集合-多群データの階層的主成分分析
その他のタイトル
その他のタイトル Hierarchical Principal Component Analysis of Multiset-Multigroup Data
著者 村上, 隆

× 村上, 隆

WEKO 6690

村上, 隆

Search repository
MURAKAMI, Takashi

× MURAKAMI, Takashi

WEKO 6691

MURAKAMI, Takashi

Search repository
抄録
内容記述 Consider a data matrix Z, which is of the form : variables×subjects, and it can be partitioned into m sets of rows and g groups of columns. Z can be seen as an m×g super matrix, the elements of which are p_k×N_s matrices Z_<ks>'s (k=1,…, m; s=1,…, g). Assume that rows of Z_<ks> have zero mean for each group, and have unit variance across all the groups. Let us call the data which can be arranged as Z multiset-multigroup one. This paper proposed a method for component analysis of multiset-multigroup data. The basic model is written as Z_<ks>=A_kC_<ks>G_s+E_<ks>, k=1,…, m, (1) s=1,…, g; where A_k is the p_k×q_k first order loading matrix for variables of k-th sets, C_<ks> is the q_k×r_s second order loading matrix of s-th group on k-th first order components which are defined as F_<ks>≡C_<ks>G_s, (2) and G_s is the r_s×N_s second order component score matrix for s-th group; E_<ks> denotes the p_k×N_s residual matrix. The basic model is a natural extension of Kroonenberg & de Leeuw (1977)'s TUCKER 2 model for three-mode data which can be written as Z_k=AC_kG+E_k, k=1,…, m, The criterion to be minimized is [numerical formula] under the constraints [numerical formula] and, G_s<G'>_s/N_s=I, s=1,…, g, (5) An alternating least squares algorithm, which is also a slight modification of TUCKALS 2 solving TUCKER 2 problem, is derived and it is adapted to handle the data with large N_s's. One of the most distinct feature of the output of this method is that the first ordr loading matrices can be interpreted as correlation matrices between variables and first order components such as [numerical formula] This hierarchical component model is not only able to explain the data more parsimoniously than individual analysis of each element matrix but also more sensitive to the group differences of loadings than analysis of all groups as a whole. An application for the data with two sets-Peer and Self ratings, and two groups-males and females was demonstrated as an illustrative example.
内容記述タイプ Abstract
内容記述
内容記述 国立情報学研究所で電子化したコンテンツを使用している。
内容記述タイプ Other
出版者
出版者 名古屋大学教育学部
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
ID登録
ID登録 10.18999/bulfep.38.155
ID登録タイプ JaLC
ISSN(print)
収録物識別子タイプ ISSN
収録物識別子 03874796
書誌情報 名古屋大學教育學部紀要. 教育心理学科

巻 38, p. 155-166, 発行日 1991-12-25
フォーマット
application/pdf
著者版フラグ
値 publisher
URI
識別子 http://hdl.handle.net/2237/3853
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 21:20:25.334692
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3