ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "29cef3fa-d00d-4418-acf8-01ef8ff8e2db"}, "_deposit": {"id": "28819", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "28819"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00028819"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2018-05-10", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "87", "bibliographicPageStart": "83", "bibliographicVolumeNumber": "66", "bibliographic_titles": [{"bibliographic_title": "\u4e2d\u90e8\u68ee\u6797\u7814\u7a76"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "In order to monitor changes of tree areas after the 2004 tsunami, the aptitude of the pixel based and the object based image analysis for Google Earth images were compared. Satellite images, which taken in 2004, 2009 and 2013, were downloaded from Google Earth Pro as maximum resolution. They were georeferenced based on a topographic map. The land cover/use was classified to 9 classes by the pixel based and the object based image analysis with supervised learning. The overall accuracy by the pixel based image analysis was 0.65-0.71. By the object based image analysis, it was 0.65-0.71. Although tree areas were misclassified to paddy field, ponds and grassland by methods, user\u2019s and producer\u2019s accuracy by the object based image analysis were higher accuracy than the pixel based.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_registration": {"attribute_name": "ID\u767b\u9332", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.18999/chufr.66.83", "subitem_identifier_reg_type": "JaLC"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u4e2d\u90e8\u68ee\u6797\u5b66\u4f1a\u4e8b\u52d9\u5c40"}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_61": {"attribute_name": "ISSN\uff08print\uff09", "attribute_value_mlt": [{"subitem_source_identifier": "1342-971X", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "ARIEF, Mochamad Candra Wirawan"}], "nameIdentifiers": [{"nameIdentifier": "94798", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "ITAYA, Akemi"}], "nameIdentifiers": [{"nameIdentifier": "94799", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-12-19"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "chufr_66_83.pdf", "filesize": [{"value": "855.3 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 855300.0, "url": {"label": "chufr_66_83.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/28819/files/chufr_66_83.pdf"}, "version_id": "c43f8b6a-1547-4408-92c6-4a15d45979f1"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "Classification", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Land cover/use", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Monitoring", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Recovery", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Supervised learning", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Detection of tree areas using Google Earth images in Banda Aceh Indonesia : Comparison between the pixel based and the object based image analysis", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Detection of tree areas using Google Earth images in Banda Aceh Indonesia : Comparison between the pixel based and the object based image analysis"}]}, "item_type_id": "10", "owner": "1", "path": ["2113/2449/2450/2451"], "permalink_uri": "https://doi.org/10.18999/chufr.66.83", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2019-12-19"}, "publish_date": "2019-12-19", "publish_status": "0", "recid": "28819", "relation": {}, "relation_version_is_last": true, "title": ["Detection of tree areas using Google Earth images in Banda Aceh Indonesia : Comparison between the pixel based and the object based image analysis"], "weko_shared_id": null}
  1. W100 学外関連団体
  2. 中部森林学会
  3. 中部森林研究
  4. 66

Detection of tree areas using Google Earth images in Banda Aceh Indonesia : Comparison between the pixel based and the object based image analysis

https://doi.org/10.18999/chufr.66.83
da5ed7ac-e2ec-476b-8893-f1ead4b80e01
名前 / ファイル ライセンス アクション
chufr_66_83.pdf chufr_66_83.pdf (855.3 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-12-19
タイトル
タイトル Detection of tree areas using Google Earth images in Banda Aceh Indonesia : Comparison between the pixel based and the object based image analysis
著者 ARIEF, Mochamad Candra Wirawan

× ARIEF, Mochamad Candra Wirawan

WEKO 94798

ARIEF, Mochamad Candra Wirawan

Search repository
ITAYA, Akemi

× ITAYA, Akemi

WEKO 94799

ITAYA, Akemi

Search repository
キーワード
主題Scheme Other
主題 Classification
キーワード
主題Scheme Other
主題 Land cover/use
キーワード
主題Scheme Other
主題 Monitoring
キーワード
主題Scheme Other
主題 Recovery
キーワード
主題Scheme Other
主題 Supervised learning
抄録
内容記述 In order to monitor changes of tree areas after the 2004 tsunami, the aptitude of the pixel based and the object based image analysis for Google Earth images were compared. Satellite images, which taken in 2004, 2009 and 2013, were downloaded from Google Earth Pro as maximum resolution. They were georeferenced based on a topographic map. The land cover/use was classified to 9 classes by the pixel based and the object based image analysis with supervised learning. The overall accuracy by the pixel based image analysis was 0.65-0.71. By the object based image analysis, it was 0.65-0.71. Although tree areas were misclassified to paddy field, ponds and grassland by methods, user’s and producer’s accuracy by the object based image analysis were higher accuracy than the pixel based.
内容記述タイプ Abstract
出版者
出版者 中部森林学会事務局
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
ID登録
ID登録 10.18999/chufr.66.83
ID登録タイプ JaLC
ISSN(print)
収録物識別子タイプ ISSN
収録物識別子 1342-971X
書誌情報 中部森林研究

巻 66, p. 83-87, 発行日 2018-05-10
著者版フラグ
値 publisher
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 09:50:09.138517
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio