ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "a1cfffa5-9d74-4a3b-bcf2-dcb7d8bc9133"}, "_deposit": {"id": "7065", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "7065"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00007065"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2006-10-21", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "154101", "bibliographicPageStart": "154101", "bibliographicVolumeNumber": "125", "bibliographic_titles": [{"bibliographic_title": "JOURNAL OF CHEMICAL PHYSICS"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "By using the many-particle Green\u2019s function (GF) the extension of the fragment molecular orbital\n(FMO) method by Kitaura et al. [Chem. Phys. Lett. 313, 701 (1999)] is proposed. It is shown that\nthe partial summation of the cluster expansion of GF reproduces the same extrapolation formula as\nthat of FMO. Therefore we can determine the excitation energy, the transition moment, and the\nlinear response of a molecule from GF approximated with the FMO procedure. It is also shown that\nno wave function exists which is consistent to the FMO results. The perturbation expansion in which\nthe self-consistent charge approximation defines the unperturbed state is reported. By using it the\nthree-body effects missing in the pair approximation of FMO are analyzed and the corrections to the\nenergy and the reduced density matrices are proposed. In contrast to the previous works these new\ncorrections are not expressed as the addition or the subtraction of the energies of fragments. They\nare size extensive and require only the quantities available by the FMO calculation. The accuracy\nof these corrections is validated with the extended Hubbard model and the several test molecules.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/8739"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "American Institute of Physics"}]}, "item_10_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "http://dx.doi.org/10.1063/1.2358978", "subitem_relation_type_select": "DOI"}}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_text_14": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Yasuda, Koji"}], "nameIdentifiers": [{"nameIdentifier": "19053", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Yamaki, Daisuke"}], "nameIdentifiers": [{"nameIdentifier": "19054", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-19"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "ChemPhys_125-154101.pdf", "filesize": [{"value": "143.5 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 143500.0, "url": {"label": "ChemPhys_125-154101.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/7065/files/ChemPhys_125-154101.pdf"}, "version_id": "a83f41a7-592a-466f-86eb-e3851c5294f0"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "The extension of the fragment molecular orbital method with the many-particle Green\u0027s function", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "The extension of the fragment molecular orbital method with the many-particle Green\u0027s function"}]}, "item_type_id": "10", "owner": "1", "path": ["312/313/314"], "permalink_uri": "http://hdl.handle.net/2237/8739", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2007-09-06"}, "publish_date": "2007-09-06", "publish_status": "0", "recid": "7065", "relation": {}, "relation_version_is_last": true, "title": ["The extension of the fragment molecular orbital method with the many-particle Green\u0027s function"], "weko_shared_id": 3}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500a 雑誌掲載論文
  3. 学術雑誌

The extension of the fragment molecular orbital method with the many-particle Green's function

http://hdl.handle.net/2237/8739
395bd6dc-d32d-4a65-a86c-aca5ae6b82a5
名前 / ファイル ライセンス アクション
ChemPhys_125-154101.pdf ChemPhys_125-154101.pdf (143.5 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2007-09-06
タイトル
タイトル The extension of the fragment molecular orbital method with the many-particle Green's function
著者 Yasuda, Koji

× Yasuda, Koji

WEKO 19053

Yasuda, Koji

Search repository
Yamaki, Daisuke

× Yamaki, Daisuke

WEKO 19054

Yamaki, Daisuke

Search repository
抄録
内容記述 By using the many-particle Green’s function (GF) the extension of the fragment molecular orbital
(FMO) method by Kitaura et al. [Chem. Phys. Lett. 313, 701 (1999)] is proposed. It is shown that
the partial summation of the cluster expansion of GF reproduces the same extrapolation formula as
that of FMO. Therefore we can determine the excitation energy, the transition moment, and the
linear response of a molecule from GF approximated with the FMO procedure. It is also shown that
no wave function exists which is consistent to the FMO results. The perturbation expansion in which
the self-consistent charge approximation defines the unperturbed state is reported. By using it the
three-body effects missing in the pair approximation of FMO are analyzed and the corrections to the
energy and the reduced density matrices are proposed. In contrast to the previous works these new
corrections are not expressed as the addition or the subtraction of the energies of fragments. They
are size extensive and require only the quantities available by the FMO calculation. The accuracy
of these corrections is validated with the extended Hubbard model and the several test molecules.
内容記述タイプ Abstract
出版者
出版者 American Institute of Physics
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
DOI
関連識別子
識別子タイプ DOI
関連識別子 http://dx.doi.org/10.1063/1.2358978
書誌情報 JOURNAL OF CHEMICAL PHYSICS

巻 125, p. 154101-154101, 発行日 2006-10-21
フォーマット
application/pdf
著者版フラグ
値 publisher
URI
識別子 http://hdl.handle.net/2237/8739
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 12:28:44.646773
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio