WEKO3
AND
アイテム
{"_buckets": {"deposit": "299f2b41-3ba4-4745-913e-c363ae3290dc"}, "_deposit": {"id": "7798", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "7798"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00007798"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2007", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "118", "bibliographicPageStart": "117", "bibliographic_titles": [{"bibliographic_title": "11th International Symposium on Wearable Computers"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "We propose a method of improving accuracy of WLAN-based location estimation. The WLAN-based location estimation is a convenient method once a dense map of access points (APs) is prepared by AP hunting such as war-driving/walking. However, the density of the APs cannot be always high. Rather, it is still low such that less than three APs are found even in urban areas. We propose recursive estimation methods and experimentally compare to the existing method, where the estimation accuracy was improved from 41.6 meters to 31.1 meters at a low density area best case.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/9518"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "IEEE"}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "Copyright \u00a9 2007 IEEE. Reprinted from (relevant publication info). This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Nagoya University\u2019s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org."}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_text_14": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Mase, Takahiko"}], "nameIdentifiers": [{"nameIdentifier": "22172", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Hirano, Yasushi"}], "nameIdentifiers": [{"nameIdentifier": "22173", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Kajita, Shoji"}], "nameIdentifiers": [{"nameIdentifier": "22174", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Mase, Kenji"}], "nameIdentifiers": [{"nameIdentifier": "22175", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-19"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "mase_4.pdf", "filesize": [{"value": "173.1 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 173100.0, "url": {"label": "mase_4.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/7798/files/mase_4.pdf"}, "version_id": "e0ad8eee-5589-43a0-8421-9e3f163be606"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Improving Accuracy of WLAN-Based Location Estimation by Using Recursive Estimation", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Improving Accuracy of WLAN-Based Location Estimation by Using Recursive Estimation"}]}, "item_type_id": "10", "owner": "1", "path": ["312/313/314"], "permalink_uri": "http://hdl.handle.net/2237/9518", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2008-02-29"}, "publish_date": "2008-02-29", "publish_status": "0", "recid": "7798", "relation": {}, "relation_version_is_last": true, "title": ["Improving Accuracy of WLAN-Based Location Estimation by Using Recursive Estimation"], "weko_shared_id": null}
Improving Accuracy of WLAN-Based Location Estimation by Using Recursive Estimation
http://hdl.handle.net/2237/9518
c311464f-e79d-47f1-9bb4-a25f75caefed
名前 / ファイル | ライセンス | アクション | |
---|---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2008-02-29 | |||||
タイトル | ||||||
タイトル | Improving Accuracy of WLAN-Based Location Estimation by Using Recursive Estimation | |||||
著者 |
Mase, Takahiko
× Mase, Takahiko× Hirano, Yasushi× Kajita, Shoji× Mase, Kenji |
|||||
権利 | ||||||
権利情報 | Copyright © 2007 IEEE. Reprinted from (relevant publication info). This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Nagoya University’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. | |||||
抄録 | ||||||
内容記述 | We propose a method of improving accuracy of WLAN-based location estimation. The WLAN-based location estimation is a convenient method once a dense map of access points (APs) is prepared by AP hunting such as war-driving/walking. However, the density of the APs cannot be always high. Rather, it is still low such that less than three APs are found even in urban areas. We propose recursive estimation methods and experimentally compare to the existing method, where the estimation accuracy was improved from 41.6 meters to 31.1 meters at a low density area best case. | |||||
内容記述タイプ | Abstract | |||||
出版者 | ||||||
出版者 | IEEE | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプresource | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
書誌情報 |
11th International Symposium on Wearable Computers p. 117-118, 発行日 2007 |
|||||
フォーマット | ||||||
application/pdf | ||||||
著者版フラグ | ||||||
値 | publisher | |||||
URI | ||||||
識別子 | http://hdl.handle.net/2237/9518 | |||||
識別子タイプ | HDL |