ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "c1312f79-9f42-43c3-96b3-b433e9344f26"}, "_deposit": {"id": "8517", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "8517"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00008517", "sets": ["314"]}, "author_link": ["23869", "23870", "23871", "23872", "23873"], "item_10_alternative_title_19": {"attribute_name": "その他のタイトル", "attribute_value_mlt": [{"subitem_alternative_title": "Solution of Non-linear Poisson Equation by Trefftz Method", "subitem_alternative_title_language": "en"}]}, "item_10_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2002", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "7", "bibliographicPageEnd": "2280", "bibliographicPageStart": "2272", "bibliographicVolumeNumber": "43", "bibliographic_titles": [{"bibliographic_title": "情報処理学会論文誌", "bibliographic_titleLang": "ja"}]}]}, "item_10_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Trefftz法は,支配方程式を満足する非特異なT-complete関数を用いた数値解析法である.これまで,2次元や3次元のラプラス方程式,2次元弾性問題などの数値解析に適用され,その数学的特性が研究されている.これに対して,本論文ではTrefftz法を用いた2次元ポアソン方程式の解法について述べる.ポアソン方程式は非同次項を有するので,支配方程式を満足するT-complete関数を決定することは一般的には困難である.そこで,本論文では,未知関数を含む非同次項をデカルト座標系の多項式で近似し,ラプラス方程式のT-complete関数と近似多項式に対応する特解でポアソン方程式の解を近似する.そして,近似解が境界条件値を満足するようにして,未知パラメータを決定する.いくつかの解析例について提案する方法を適用し,その数学的特性を検討する. ", "subitem_description_language": "ja", "subitem_description_type": "Abstract"}, {"subitem_description": "Trefftz method is the boundary-type solution procedure using the non-singular T-complete functions satisfying the governing equation. Until now, it is applied to numerical analyses of the two- and three-dimensional Laplace equations and the 2-dimensional elastic problem and the mathematical characteristic is studied. On the other hand, this paper describes the application of the Trefftz method to solve the boundary value problem of two-dimensional Poisson equation. Since the Poisson equation has non-homogeneous term, it is generally difficult to determine the function satisfying the governing equation. In this paper, non-homogeneous term containing an unknown function is approximated by the polynomial in the Cartesian coordinates and then, the solution for the Poisson equation is approximated with the superposition of the T-complete function of the Laplace equation and the particular solutions related to the approximate polynomal. Unknown parameters included in the approximate solution are determined so that the solution satisfies the boundary conditions. The present scheme is applied to some examples in order to study the numerical properties.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/10264"}]}, "item_10_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "情報処理学会", "subitem_publisher_language": "ja"}]}, "item_10_rights_12": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "ここに掲載した著作物の利用に関する注意 本著作物の著作権は(社)情報処理学会に帰属します。本著作物は著作権者である情報処理学会の許可のもとに掲載するものです。ご利用に当たっては「著作権法」ならびに「情報処理学会倫理綱領」に従うことをお願いいたします。 ", "subitem_rights_language": "ja"}, {"subitem_rights": "Notice for the use of this material The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). This material is published on this web site with the agreement of the author (s) and the IPSJ. Please be complied with Copyright Law of Japan and the Code of Ethics of the IPSJ if any users wish to reproduce, make derivative work, distribute or make available to the public any part or whole thereof. All Rights Reserved, Copyright (C) Information Processing Society of Japan. Comments are welcome. Mail to address:  editj\u003cat\u003eipsj.or.jp, please.", "subitem_rights_language": "en"}]}, "item_10_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "03875806", "subitem_source_identifier_type": "PISSN"}]}, "item_10_text_14": {"attribute_name": "フォーマット", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_1615787544753": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "KITA, EISUKE", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "23869", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "池田, 洋一", "creatorNameLang": "ja"}], "nameIdentifiers": [{"nameIdentifier": "23870", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "IKEDA, YOUICHI", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "23871", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "神谷, 紀生", "creatorNameLang": "ja"}], "nameIdentifiers": [{"nameIdentifier": "23872", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "KAMIYA, NORIO", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "23873", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-19"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "ipsjj_43_7_2272.pdf", "filesize": [{"value": "637.0 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 637000.0, "url": {"label": "ipsjj_43_7_2272.pdf", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/8517/files/ipsjj_43_7_2272.pdf"}, "version_id": "2e2d15bb-810f-47ca-a95b-819d78efbb7c"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Trefftz法による非線形ポアソン方程式の解法", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Trefftz法による非線形ポアソン方程式の解法", "subitem_title_language": "ja"}]}, "item_type_id": "10", "owner": "1", "path": ["314"], "permalink_uri": "http://hdl.handle.net/2237/10264", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2008-07-24"}, "publish_date": "2008-07-24", "publish_status": "0", "recid": "8517", "relation": {}, "relation_version_is_last": true, "title": ["Trefftz法による非線形ポアソン方程式の解法"], "weko_shared_id": -1}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500a 雑誌掲載論文
  3. 学術雑誌

Trefftz法による非線形ポアソン方程式の解法

http://hdl.handle.net/2237/10264
http://hdl.handle.net/2237/10264
50c8796c-df71-4f8e-a060-27f262e7cea3
名前 / ファイル ライセンス アクション
ipsjj_43_7_2272.pdf ipsjj_43_7_2272.pdf (637.0 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2008-07-24
タイトル
タイトル Trefftz法による非線形ポアソン方程式の解法
言語 ja
その他のタイトル
その他のタイトル Solution of Non-linear Poisson Equation by Trefftz Method
言語 en
著者 KITA, EISUKE

× KITA, EISUKE

WEKO 23869

en KITA, EISUKE

Search repository
池田, 洋一

× 池田, 洋一

WEKO 23870

ja 池田, 洋一

Search repository
IKEDA, YOUICHI

× IKEDA, YOUICHI

WEKO 23871

en IKEDA, YOUICHI

Search repository
神谷, 紀生

× 神谷, 紀生

WEKO 23872

ja 神谷, 紀生

Search repository
KAMIYA, NORIO

× KAMIYA, NORIO

WEKO 23873

en KAMIYA, NORIO

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利
言語 ja
権利情報 ここに掲載した著作物の利用に関する注意 本著作物の著作権は(社)情報処理学会に帰属します。本著作物は著作権者である情報処理学会の許可のもとに掲載するものです。ご利用に当たっては「著作権法」ならびに「情報処理学会倫理綱領」に従うことをお願いいたします。
権利
言語 en
権利情報 Notice for the use of this material The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). This material is published on this web site with the agreement of the author (s) and the IPSJ. Please be complied with Copyright Law of Japan and the Code of Ethics of the IPSJ if any users wish to reproduce, make derivative work, distribute or make available to the public any part or whole thereof. All Rights Reserved, Copyright (C) Information Processing Society of Japan. Comments are welcome. Mail to address:  editj<at>ipsj.or.jp, please.
抄録
内容記述 Trefftz法は,支配方程式を満足する非特異なT-complete関数を用いた数値解析法である.これまで,2次元や3次元のラプラス方程式,2次元弾性問題などの数値解析に適用され,その数学的特性が研究されている.これに対して,本論文ではTrefftz法を用いた2次元ポアソン方程式の解法について述べる.ポアソン方程式は非同次項を有するので,支配方程式を満足するT-complete関数を決定することは一般的には困難である.そこで,本論文では,未知関数を含む非同次項をデカルト座標系の多項式で近似し,ラプラス方程式のT-complete関数と近似多項式に対応する特解でポアソン方程式の解を近似する.そして,近似解が境界条件値を満足するようにして,未知パラメータを決定する.いくつかの解析例について提案する方法を適用し,その数学的特性を検討する.
言語 ja
内容記述タイプ Abstract
抄録
内容記述 Trefftz method is the boundary-type solution procedure using the non-singular T-complete functions satisfying the governing equation. Until now, it is applied to numerical analyses of the two- and three-dimensional Laplace equations and the 2-dimensional elastic problem and the mathematical characteristic is studied. On the other hand, this paper describes the application of the Trefftz method to solve the boundary value problem of two-dimensional Poisson equation. Since the Poisson equation has non-homogeneous term, it is generally difficult to determine the function satisfying the governing equation. In this paper, non-homogeneous term containing an unknown function is approximated by the polynomial in the Cartesian coordinates and then, the solution for the Poisson equation is approximated with the superposition of the T-complete function of the Laplace equation and the particular solutions related to the approximate polynomal. Unknown parameters included in the approximate solution are determined so that the solution satisfies the boundary conditions. The present scheme is applied to some examples in order to study the numerical properties.
言語 en
内容記述タイプ Abstract
出版者
言語 ja
出版者 情報処理学会
言語
言語 jpn
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
ISSN
収録物識別子タイプ PISSN
収録物識別子 03875806
書誌情報 ja : 情報処理学会論文誌

巻 43, 号 7, p. 2272-2280, 発行日 2002
フォーマット
application/pdf
著者版フラグ
値 publisher
URI
識別子 http://hdl.handle.net/2237/10264
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 12:09:25.196750
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3