ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B200 工学部/工学研究科
  2. B200a 雑誌掲載論文
  3. 学術雑誌

Application of reliability-based automatic repeat request to multi-class classification for brain-computer interfaces

http://hdl.handle.net/2237/13908
http://hdl.handle.net/2237/13908
6c148ce8-8524-4458-86e6-fba799aa1521
名前 / ファイル ライセンス アクション
kokusai-0908-takahashi.pdf kokusai-0908-takahashi.pdf (150.1 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2010-08-02
タイトル
タイトル Application of reliability-based automatic repeat request to multi-class classification for brain-computer interfaces
言語 en
著者 Takahashi, Hiromu

× Takahashi, Hiromu

WEKO 38156

en Takahashi, Hiromu

Search repository
Yoshikawa, Tomohiro

× Yoshikawa, Tomohiro

WEKO 38157

en Yoshikawa, Tomohiro

Search repository
Furuhashi, Takeshi

× Furuhashi, Takeshi

WEKO 38158

en Furuhashi, Takeshi

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利
言語 en
権利情報 ©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
抄録
内容記述タイプ Abstract
内容記述 A brain-computer interface (BCI) is a system which could enable patients like those with amyotrophic lateral sclerosis to control some equipment and to communicate with other people, and has been anticipated to be achieved. One of the problems in BCI research is a trade-off between transmission speed and accuracy. In the field of data transmission, on the other hand, reliability-based hybrid automatic repeat request (RB-HARQ), one of the error control methods, has been developed to achieve both of the performances. The authors, therefore, have considered BCIs as communications between users and computers, and applied reliability-based ARQ, customized RB-HARQ, to BCIs. It has been shown that the proposed method is superior to other error control methods in two-class classification. In this paper, the proposed method is extended to deal with multi-class classification of EEG data, and is shown to be effective in multi-class problems.
言語 en
出版者
出版者 IEEE
言語 en
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 https://doi.org/10.1109/FUZZY.2009.5277224
ISSN
収録物識別子タイプ PISSN
収録物識別子 1098-7584
書誌情報 en : IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2009)

p. 1027-1032, 発行日 2009-08-20
フォーマット
値 application/pdf
著者版フラグ
値 publisher
URI
識別子 http://hdl.handle.net/2237/13908
識別子タイプ HDL
URI
識別子 http://dx.doi.org/10.1109/FUZZY.2009.5277224
識別子タイプ DOI
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 19:03:43.372910
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3