ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "b9137966-8ac0-4e6f-bf6e-850c798d16ac"}, "_deposit": {"id": "13075", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "13075"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00013075", "sets": ["314"]}, "author_link": ["41146", "41147", "41148"], "item_10_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2010-05-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "5", "bibliographicPageEnd": "1252", "bibliographicPageStart": "1244", "bibliographicVolumeNumber": "E93-D", "bibliographic_titles": [{"bibliographic_title": "IEICE transactions on information and systems", "bibliographic_titleLang": "en"}]}]}, "item_10_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "To improve speech recognition performance, feature transformation based on discriminant analysis has been widely used to reduce the redundant dimensions of acoustic features. Linear discriminant analysis (LDA) and heteroscedastic discriminant analysis (HDA) are often used for this purpose, and a generalization method for LDA and HDA, called power LDA (PLDA), has been proposed. However, these methods may result in an unexpected dimensionality reduction for multimodal data. It is important to preserve the local structure of the data when reducing the dimensionality of multimodal data. In this paper we introduce two methods, locality-preserving HDA and locality-preserving PLDA, to reduce dimensionality of multimodal data appropriately. We also propose an approximate calculation scheme to calculate sub-optimal projections rapidly. Experimental results show that the locality-preserving methods yield better performance than the traditional ones in speech recognition.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "URI", "subitem_identifier_uri": "http://www.ieice.org/jpn/trans_online/index.html"}, {"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/14969"}]}, "item_10_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Institute of Electronics, Information and Communication Engineers", "subitem_publisher_language": "en"}]}, "item_10_relation_43": {"attribute_name": "関連情報", "attribute_value_mlt": [{"subitem_relation_type": "isVersionOf", "subitem_relation_type_id": {"subitem_relation_type_id_text": "http://www.ieice.org/jpn/trans_online/index.html", "subitem_relation_type_select": "URI"}}]}, "item_10_rights_12": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "Copyright (C) 2010 IEICE", "subitem_rights_language": "en"}]}, "item_10_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0916-8532", "subitem_source_identifier_type": "PISSN"}]}, "item_1615787544753": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "SAKAI, Makoto", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "41146", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "KITAOKA, Norihide", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "41147", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "TAKEDA, Kazuya", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "41148", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-20"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "396.pdf", "filesize": [{"value": "218.3 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 218300.0, "url": {"label": "396.pdf", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/13075/files/396.pdf"}, "version_id": "ddcb1f6b-66bf-4fb2-9def-45436ffa8a44"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "speech recognition", "subitem_subject_scheme": "Other"}, {"subitem_subject": "feature extraction", "subitem_subject_scheme": "Other"}, {"subitem_subject": "multidimensional signal processing", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Acoustic Feature Transformation Based on Discriminant Analysis Preserving Local Structure for Speech Recognition", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Acoustic Feature Transformation Based on Discriminant Analysis Preserving Local Structure for Speech Recognition", "subitem_title_language": "en"}]}, "item_type_id": "10", "owner": "1", "path": ["314"], "permalink_uri": "http://hdl.handle.net/2237/14969", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2011-06-28"}, "publish_date": "2011-06-28", "publish_status": "0", "recid": "13075", "relation": {}, "relation_version_is_last": true, "title": ["Acoustic Feature Transformation Based on Discriminant Analysis Preserving Local Structure for Speech Recognition"], "weko_shared_id": -1}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500a 雑誌掲載論文
  3. 学術雑誌

Acoustic Feature Transformation Based on Discriminant Analysis Preserving Local Structure for Speech Recognition

http://hdl.handle.net/2237/14969
http://hdl.handle.net/2237/14969
1d5a2cef-a162-40e6-96e4-27911caf2dc6
名前 / ファイル ライセンス アクション
396.pdf 396.pdf (218.3 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2011-06-28
タイトル
タイトル Acoustic Feature Transformation Based on Discriminant Analysis Preserving Local Structure for Speech Recognition
言語 en
著者 SAKAI, Makoto

× SAKAI, Makoto

WEKO 41146

en SAKAI, Makoto

Search repository
KITAOKA, Norihide

× KITAOKA, Norihide

WEKO 41147

en KITAOKA, Norihide

Search repository
TAKEDA, Kazuya

× TAKEDA, Kazuya

WEKO 41148

en TAKEDA, Kazuya

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利
言語 en
権利情報 Copyright (C) 2010 IEICE
キーワード
主題Scheme Other
主題 speech recognition
キーワード
主題Scheme Other
主題 feature extraction
キーワード
主題Scheme Other
主題 multidimensional signal processing
抄録
内容記述 To improve speech recognition performance, feature transformation based on discriminant analysis has been widely used to reduce the redundant dimensions of acoustic features. Linear discriminant analysis (LDA) and heteroscedastic discriminant analysis (HDA) are often used for this purpose, and a generalization method for LDA and HDA, called power LDA (PLDA), has been proposed. However, these methods may result in an unexpected dimensionality reduction for multimodal data. It is important to preserve the local structure of the data when reducing the dimensionality of multimodal data. In this paper we introduce two methods, locality-preserving HDA and locality-preserving PLDA, to reduce dimensionality of multimodal data appropriately. We also propose an approximate calculation scheme to calculate sub-optimal projections rapidly. Experimental results show that the locality-preserving methods yield better performance than the traditional ones in speech recognition.
言語 en
内容記述タイプ Abstract
出版者
言語 en
出版者 Institute of Electronics, Information and Communication Engineers
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
関連情報
関連タイプ isVersionOf
識別子タイプ URI
関連識別子 http://www.ieice.org/jpn/trans_online/index.html
ISSN
収録物識別子タイプ PISSN
収録物識別子 0916-8532
書誌情報 en : IEICE transactions on information and systems

巻 E93-D, 号 5, p. 1244-1252, 発行日 2010-05-01
著者版フラグ
値 publisher
URI
識別子 http://www.ieice.org/jpn/trans_online/index.html
識別子タイプ URI
URI
識別子 http://hdl.handle.net/2237/14969
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 18:39:47.314654
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3