ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "ab5616d3-3f4a-48cb-af63-a0ef51a8945c"}, "_deposit": {"id": "19090", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "19090"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00019090"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2010", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "40", "bibliographicPageStart": "37", "bibliographicVolumeNumber": "2", "bibliographic_titles": [{"bibliographic_title": "JSIAM Letters"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "The present paper describes a numerical solution of shape optimization problems for non-stationary Navier-Stokes problems. As a concrete example, we consider the problem of finding the shape of an obstacle in a flow field in order to minimize the energy loss integral for an assigned time interval. The primary goal of the present paper is to demonstrate the evaluation of the shape derivative of the energy loss. The traction method is used for the reshaping algorithm. Numerical results show that the shapes of the circle obstacle converge to wedge shapes for the cases of Reynolds numbers of 100 and 250.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "DOI", "subitem_identifier_uri": "http://dx.doi.org/10.14495/jsiaml.2.37"}, {"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/21195"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u65e5\u672c\u5fdc\u7528\u6570\u7406\u5b66\u4f1a"}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1883-0609", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Iwata, Yutaro"}], "nameIdentifiers": [{"nameIdentifier": "55777", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Azegami, Hideyuki"}], "nameIdentifiers": [{"nameIdentifier": "55778", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Aoyama, Taiki"}], "nameIdentifiers": [{"nameIdentifier": "55779", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Katamine, Eiji"}], "nameIdentifiers": [{"nameIdentifier": "55780", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-21"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "2_37.pdf", "filesize": [{"value": "722.6 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 722600.0, "url": {"label": "2_37.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/19090/files/2_37.pdf"}, "version_id": "e3eb5eb9-01ca-4e1f-8ca2-c63387f0b593"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "calculus of variations", "subitem_subject_scheme": "Other"}, {"subitem_subject": "shape optimization", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Navier-Stokes problem", "subitem_subject_scheme": "Other"}, {"subitem_subject": "shape derivative", "subitem_subject_scheme": "Other"}, {"subitem_subject": "traction method", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Numerical solution to shape optimization problems for non-stationary Navier-Stokes problems", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Numerical solution to shape optimization problems for non-stationary Navier-Stokes problems"}]}, "item_type_id": "10", "owner": "1", "path": ["312/313/314"], "permalink_uri": "http://hdl.handle.net/2237/21195", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2015-02-10"}, "publish_date": "2015-02-10", "publish_status": "0", "recid": "19090", "relation": {}, "relation_version_is_last": true, "title": ["Numerical solution to shape optimization problems for non-stationary Navier-Stokes problems"], "weko_shared_id": null}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500a 雑誌掲載論文
  3. 学術雑誌

Numerical solution to shape optimization problems for non-stationary Navier-Stokes problems

http://hdl.handle.net/2237/21195
e7cbdd9e-f329-4231-8534-6ed4345a801a
名前 / ファイル ライセンス アクション
2_37.pdf 2_37.pdf (722.6 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2015-02-10
タイトル
タイトル Numerical solution to shape optimization problems for non-stationary Navier-Stokes problems
著者 Iwata, Yutaro

× Iwata, Yutaro

WEKO 55777

Iwata, Yutaro

Search repository
Azegami, Hideyuki

× Azegami, Hideyuki

WEKO 55778

Azegami, Hideyuki

Search repository
Aoyama, Taiki

× Aoyama, Taiki

WEKO 55779

Aoyama, Taiki

Search repository
Katamine, Eiji

× Katamine, Eiji

WEKO 55780

Katamine, Eiji

Search repository
キーワード
主題Scheme Other
主題 calculus of variations
キーワード
主題Scheme Other
主題 shape optimization
キーワード
主題Scheme Other
主題 Navier-Stokes problem
キーワード
主題Scheme Other
主題 shape derivative
キーワード
主題Scheme Other
主題 traction method
抄録
内容記述 The present paper describes a numerical solution of shape optimization problems for non-stationary Navier-Stokes problems. As a concrete example, we consider the problem of finding the shape of an obstacle in a flow field in order to minimize the energy loss integral for an assigned time interval. The primary goal of the present paper is to demonstrate the evaluation of the shape derivative of the energy loss. The traction method is used for the reshaping algorithm. Numerical results show that the shapes of the circle obstacle converge to wedge shapes for the cases of Reynolds numbers of 100 and 250.
内容記述タイプ Abstract
出版者
出版者 日本応用数理学会
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
ISSN
収録物識別子タイプ ISSN
収録物識別子 1883-0609
書誌情報 JSIAM Letters

巻 2, p. 37-40, 発行日 2010
著者版フラグ
値 publisher
URI
識別子 http://dx.doi.org/10.14495/jsiaml.2.37
識別子タイプ DOI
URI
識別子 http://hdl.handle.net/2237/21195
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 16:22:51.146757
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio