ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "9c97cf63-cc70-4fcd-b37f-5e9de0e6b415"}, "_deposit": {"created_by": 17, "id": "2003937", "owner": "17", "owners": [17], "owners_ext": {"displayname": "repository", "username": "repository"}, "pid": {"revision_id": 0, "type": "depid", "value": "2003937"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:02003937", "sets": ["599"]}, "author_link": [], "control_number": "2003937", "item_1615768549627": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_ab4af688f83e57aa", "subitem_version_type": "AM"}]}, "item_9_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2022-10", "bibliographicIssueDateType": "Issued"}, "bibliographic_titles": [{"bibliographic_title": "2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)", "bibliographic_titleLang": "en"}]}]}, "item_9_description_4": {"attribute_name": "内容記述", "attribute_value_mlt": [{"subitem_description": "Optoelectronic implementation of artificial neural networks (ANNs) has been attracting significant attention due to its potential for low-power computation at the speed of light. Among the ANNs, adopting recurrent neural network (RNN) is a promising solution since it provides sufficient inference accuracy with a more compact structure than other ANNs. This paper proposes a novel optoelectronic architecture of RNN. The key idea is to implement the vector-matrix multiplication optically to exploit the speed of light and implement the activation and feedback electronically to exploit the controllability of electronics. The electronics part is composed of an electrical feedback circuit with a dynamic latch to synchronize the recurrent loops with a clock signal. Using a commercial optoelectronic circuit simulator, we confirm the correct behavior of the optoelectronic RNN. Experimental results obtained using TensorFlow show that the proposed optoelectronic RNN achieves more than 98% inference accuracy in image classification with a minimal footprint without sacrificing low-power and high-speed nature of light.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}, {"subitem_description": "2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). 04-06 July 2022. Nicosia, Cyprus", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_9_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "IEEE", "subitem_publisher_language": "en"}]}, "item_9_relation_43": {"attribute_name": "関連情報", "attribute_value_mlt": [{"subitem_relation_type": "isVersionOf", "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1109/ISVLSI54635.2022.00087", "subitem_relation_type_select": "DOI"}}]}, "item_9_rights_12": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”", "subitem_rights_language": "en"}]}, "item_9_source_id_7": {"attribute_name": "収録物識別子", "attribute_value_mlt": [{"subitem_source_identifier": "2159-3469", "subitem_source_identifier_type": "PISSN"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Ichikawa, Taisei", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Masuda, Yutaka", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Ishihara, Tohru", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Shinya, Akihiko", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Notomi, Masaya", "creatorNameLang": "en"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2022-10-21"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "ISVLSI2022_ichikawa_CameraReady.pdf", "filesize": [{"value": "283 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "application/pdf", "size": 283000.0, "url": {"objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/2003937/files/ISVLSI2022_ichikawa_CameraReady.pdf"}, "version_id": "43c634bf-33ca-4aab-84c4-fa6be525d71a"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "optical computing", "subitem_subject_scheme": "Other"}, {"subitem_subject": "neuromorphic computing", "subitem_subject_scheme": "Other"}, {"subitem_subject": "recurrent neural network", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "conference paper", "resourceuri": "http://purl.org/coar/resource_type/c_5794"}]}, "item_title": "Optoelectronic Implementation of Compact and Power-efficient Recurrent Neural Networks", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Optoelectronic Implementation of Compact and Power-efficient Recurrent Neural Networks", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "17", "path": ["599"], "permalink_uri": "http://hdl.handle.net/2237/0002003937", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2022-10-21"}, "publish_date": "2022-10-21", "publish_status": "0", "recid": "2003937", "relation": {}, "relation_version_is_last": true, "title": ["Optoelectronic Implementation of Compact and Power-efficient Recurrent Neural Networks"], "weko_shared_id": -1}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500e 会議資料
  3. 国際会議

Optoelectronic Implementation of Compact and Power-efficient Recurrent Neural Networks

http://hdl.handle.net/2237/0002003937
http://hdl.handle.net/2237/0002003937
078a94ff-43cc-4869-af9b-38f1c1e2b336
名前 / ファイル ライセンス アクション
ISVLSI2022_ichikawa_CameraReady.pdf ISVLSI2022_ichikawa_CameraReady.pdf (283 KB)
Item type itemtype_ver1(1)
公開日 2022-10-21
タイトル
タイトル Optoelectronic Implementation of Compact and Power-efficient Recurrent Neural Networks
言語 en
著者 Ichikawa, Taisei

× Ichikawa, Taisei

en Ichikawa, Taisei

Search repository
Masuda, Yutaka

× Masuda, Yutaka

en Masuda, Yutaka

Search repository
Ishihara, Tohru

× Ishihara, Tohru

en Ishihara, Tohru

Search repository
Shinya, Akihiko

× Shinya, Akihiko

en Shinya, Akihiko

Search repository
Notomi, Masaya

× Notomi, Masaya

en Notomi, Masaya

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利
言語 en
権利情報 “© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”
キーワード
主題Scheme Other
主題 optical computing
キーワード
主題Scheme Other
主題 neuromorphic computing
キーワード
主題Scheme Other
主題 recurrent neural network
内容記述
内容記述 Optoelectronic implementation of artificial neural networks (ANNs) has been attracting significant attention due to its potential for low-power computation at the speed of light. Among the ANNs, adopting recurrent neural network (RNN) is a promising solution since it provides sufficient inference accuracy with a more compact structure than other ANNs. This paper proposes a novel optoelectronic architecture of RNN. The key idea is to implement the vector-matrix multiplication optically to exploit the speed of light and implement the activation and feedback electronically to exploit the controllability of electronics. The electronics part is composed of an electrical feedback circuit with a dynamic latch to synchronize the recurrent loops with a clock signal. Using a commercial optoelectronic circuit simulator, we confirm the correct behavior of the optoelectronic RNN. Experimental results obtained using TensorFlow show that the proposed optoelectronic RNN achieves more than 98% inference accuracy in image classification with a minimal footprint without sacrificing low-power and high-speed nature of light.
言語 en
内容記述タイプ Abstract
内容記述
内容記述 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). 04-06 July 2022. Nicosia, Cyprus
言語 en
内容記述タイプ Other
出版者
言語 en
出版者 IEEE
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_5794
タイプ conference paper
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
関連情報
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 https://doi.org/10.1109/ISVLSI54635.2022.00087
収録物識別子
収録物識別子タイプ PISSN
収録物識別子 2159-3469
書誌情報 en : 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

発行日 2022-10
戻る
0
views
See details
Views

Versions

Ver.1 2022-10-21 06:07:12.078779
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3