ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "f179a732-b1a4-44cc-ad34-f8d1e82f6c5a"}, "_deposit": {"id": "21706", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "21706"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00021706"}, "item_10_alternative_title_19": {"attribute_name": "\u305d\u306e\u4ed6\u306e\u8a00\u8a9e\u306e\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_alternative_title": "A study on a method for stable pedestrian detection against pose changes with generative learning"}]}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2011-05-12", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "49", "bibliographicPageEnd": "132", "bibliographicPageStart": "127", "bibliographicVolumeNumber": "111", "bibliographic_titles": [{"bibliographic_title": "\u96fb\u5b50\u60c5\u5831\u901a\u4fe1\u5b66\u4f1a\u6280\u8853\u7814\u7a76\u5831\u544a. MI, \u533b\u7528\u753b\u50cf"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "\u8fd1\u5e74,\u8eca\u8f09\u30ab\u30e1\u30e9\u3067\u64ae\u5f71\u3055\u308c\u305f\u753b\u50cf\u304b\u3089\u6b69\u884c\u8005\u3092\u691c\u51fa\u3059\u308b\u7814\u7a76\u304c\u6ce8\u76ee\u3055\u308c\u3066\u3044\u308b.\u3057\u304b\u3057,\u59ff\u52e2\u5909\u5316\u304c\u5927\u304d\u304f,\u304b\u3064\u69d8\u3005\u306a\u80cc\u666f\u306b\u5b58\u5728\u3059\u308b\u6b69\u884c\u8005\u3092\u691c\u51fa\u3059\u308b\u3053\u3068\u306f\u5bb9\u6613\u3067\u306f\u306a\u3044.\u672c\u7814\u7a76\u3067\u306f,\u8eca\u8f09\u30ab\u30e1\u30e9\u753b\u50cf\u304b\u3089\u306e\u6b69\u884c\u8005\u691c\u51fa\u306b\u304a\u3044\u3066,\u591a\u69d8\u306a\u59ff\u52e2\u5909\u5316\u306b\u5bfe\u5fdc\u3059\u308b\u305f\u3081\u306e\u624b\u6cd5\u3092\u63d0\u6848\u3059\u308b.\u753b\u50cf\u4e2d\u306e\u6b69\u884c\u8005\u306e\u898b\u3048\u3092\u7279\u5fb4\u3068\u3057\u305f\u5f93\u6765\u306e\u6b69\u884c\u8005\u691c\u51fa\u624b\u6cd5\u3067\u306f,\u6b69\u884c\u8005\u306e\u59ff\u52e2\u5909\u5316\u3084\u6b69\u884c\u8005\u3092\u53d6\u308a\u5dfb\u304f\u74b0\u5883\u306e\u5909\u5316\u306b\u5bfe\u5fdc\u3059\u308b\u305f\u3081\u306b,\u5b66\u7fd2\u7528\u306b\u4e8b\u524d\u306b\u5927\u91cf\u306e\u6b69\u884c\u8005\u753b\u50cf\u3092\u4eba\u624b\u3067\u53ce\u96c6\u3059\u308b\u5fc5\u8981\u304c\u3042\u3063\u305f.\u63d0\u6848\u624b\u6cd5\u3067\u306f\u3053\u306e\u554f\u984c\u306b\u5bfe\u3057\u3066,\u5c11\u6570\u306e\u6b69\u884c\u8005\u753b\u50cf\u3092\u3044\u304f\u3064\u304b\u306e\u59ff\u52e2\u30af\u30e9\u30b9\u306b\u5206\u985e\u3057\u305f\u5f8c\u306b,\u59ff\u52e2\u30af\u30e9\u30b9\u3054\u3068\u306b\u591a\u69d8\u306a\u6b69\u884c\u8005\u753b\u50cf\u3092\u751f\u6210\u3057,\u3055\u3089\u306b\u3053\u306e\u59ff\u52e2\u30af\u30e9\u30b9\u3092\u30c6\u30f3\u30d7\u30ec\u30fc\u30c8\u3068\u3057\u305f\u30de\u30eb\u30c1\u30c6\u30f3\u30d7\u30ec\u30fc\u30c8\u578b\u306e\u8b58\u5225\u5668\u3092\u69cb\u7bc9\u3059\u308b\u3053\u3068\u3067\u89e3\u6c7a\u3092\u56f3\u308b.\u5b9f\u9a13\u306e\u7d50\u679c,\u5f93\u6765\u624b\u6cd5\u306b\u6bd4\u3079\u3066\u63d0\u6848\u624b\u6cd5\u306e\u691c\u51fa\u7cbe\u5ea6\u306f\u5927\u304d\u304f\u5411\u4e0a\u3057,\u305d\u306e\u6709\u52b9\u6027\u3092\u78ba\u8a8d\u3057\u305f.Recently, pedestrian detection from in-vehicle camera images is being focused. However, it is difficult to detect pedestrians due to the variety of their poses and backgrounds. To tackle this problem, we propose a method to detect various pedestrians from in-vehicle camera images. To deal with changes of pedestrians\u0027 pose and environment, most existing methods making use of their appearance require to prepare a lot of pedestrian images manually. The proposed method classifies a small number of pedestrian images into several pose classes and then generates various pedestrian images from each pose class. Finally, the proposed method constructs a classifier based on multiple templates from each pedestrian pose. Experimental results showed that the detection accuracy of the method outperformed existing methods, and we confirmed its effectiveness. [Note]This document is an informal handout distributed at an IEICE TC-PRMU workshop.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "URI", "subitem_identifier_uri": "http://ci.nii.ac.jp/naid/110008725866/"}, {"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/23855"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u4e00\u822c\u793e\u56e3\u6cd5\u4eba\u96fb\u5b50\u60c5\u5831\u901a\u4fe1\u5b66\u4f1a"}]}, "item_10_relation_40": {"attribute_name": "\u30b7\u30ea\u30fc\u30ba", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "IEICE Technical Report;IE2011-31, PRMU2011-23, MI2011-23"}]}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "(c)\u4e00\u822c\u793e\u56e3\u6cd5\u4eba\u96fb\u5b50\u60c5\u5831\u901a\u4fe1\u5b66\u4f1a \u672c\u6587\u30c7\u30fc\u30bf\u306f\u5b66\u5354\u4f1a\u306e\u8a31\u8afe\u306b\u57fa\u3065\u304dCiNii\u304b\u3089\u8907\u88fd\u3057\u305f\u3082\u306e\u3067\u3042\u308b"}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0913-5685", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u5409\u7530, \u82f1\u53f2"}], "nameIdentifiers": [{"nameIdentifier": "64371", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u51fa\u53e3, \u5927\u8f14"}], "nameIdentifiers": [{"nameIdentifier": "64372", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u4e95\u624b, \u4e00\u90ce"}], "nameIdentifiers": [{"nameIdentifier": "64373", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u6751\u702c, \u6d0b"}], "nameIdentifiers": [{"nameIdentifier": "64374", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u5f8c\u85e4, \u90a6\u535a"}], "nameIdentifiers": [{"nameIdentifier": "64375", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u6728\u6751, \u597d\u514b"}], "nameIdentifiers": [{"nameIdentifier": "64376", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u5185\u85e4, \u8cb4\u5fd7"}], "nameIdentifiers": [{"nameIdentifier": "64377", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "YOSHIDA, Hidefumi"}], "nameIdentifiers": [{"nameIdentifier": "64378", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "DEGUCHI, Daisuke"}], "nameIdentifiers": [{"nameIdentifier": "64379", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "IDE, Ichiro"}], "nameIdentifiers": [{"nameIdentifier": "64380", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "MURASE, Hiroshi"}], "nameIdentifiers": [{"nameIdentifier": "64381", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "GOTO, Kunihiro"}], "nameIdentifiers": [{"nameIdentifier": "64382", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "KIMURA, Yoshikatsu"}], "nameIdentifiers": [{"nameIdentifier": "64383", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "NAITO, Takashi"}], "nameIdentifiers": [{"nameIdentifier": "64384", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-21"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "110008725866.pdf", "filesize": [{"value": "1.5 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 1500000.0, "url": {"label": "110008725866.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/21706/files/110008725866.pdf"}, "version_id": "412d7bed-dbee-476f-8a93-dd98507c5833"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "\u6b69\u884c\u8005\u691c\u51fa", "subitem_subject_scheme": "Other"}, {"subitem_subject": "\u751f\u6210\u578b\u5b66\u7fd2\u6cd5", "subitem_subject_scheme": "Other"}, {"subitem_subject": "HOG", "subitem_subject_scheme": "Other"}, {"subitem_subject": "SVM", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Pedestrian detection", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Generative learning", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "\u751f\u6210\u578b\u5b66\u7fd2\u6cd5\u3092\u7528\u3044\u305f\u59ff\u52e2\u5909\u5316\u306b\u9811\u5065\u306a\u6b69\u884c\u8005\u691c\u51fa\u306e\u691c\u8a0e(\u4e00\u822c\u30bb\u30c3\u30b7\u30e7\u30f3,\u533b\u7528\u753b\u50cf\u51e6\u7406\u5206\u91ce\u306b\u304a\u3051\u308b\u8a08\u6e2c\u30fb\u8a8d\u8b58\u30fb\u7406\u89e3)", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "\u751f\u6210\u578b\u5b66\u7fd2\u6cd5\u3092\u7528\u3044\u305f\u59ff\u52e2\u5909\u5316\u306b\u9811\u5065\u306a\u6b69\u884c\u8005\u691c\u51fa\u306e\u691c\u8a0e(\u4e00\u822c\u30bb\u30c3\u30b7\u30e7\u30f3,\u533b\u7528\u753b\u50cf\u51e6\u7406\u5206\u91ce\u306b\u304a\u3051\u308b\u8a08\u6e2c\u30fb\u8a8d\u8b58\u30fb\u7406\u89e3)"}]}, "item_type_id": "10", "owner": "1", "path": ["312/313/314"], "permalink_uri": "http://hdl.handle.net/2237/23855", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2016-03-16"}, "publish_date": "2016-03-16", "publish_status": "0", "recid": "21706", "relation": {}, "relation_version_is_last": true, "title": ["\u751f\u6210\u578b\u5b66\u7fd2\u6cd5\u3092\u7528\u3044\u305f\u59ff\u52e2\u5909\u5316\u306b\u9811\u5065\u306a\u6b69\u884c\u8005\u691c\u51fa\u306e\u691c\u8a0e(\u4e00\u822c\u30bb\u30c3\u30b7\u30e7\u30f3,\u533b\u7528\u753b\u50cf\u51e6\u7406\u5206\u91ce\u306b\u304a\u3051\u308b\u8a08\u6e2c\u30fb\u8a8d\u8b58\u30fb\u7406\u89e3)"], "weko_shared_id": null}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500a 雑誌掲載論文
  3. 学術雑誌

生成型学習法を用いた姿勢変化に頑健な歩行者検出の検討(一般セッション,医用画像処理分野における計測・認識・理解)

http://hdl.handle.net/2237/23855
dd034bb6-61d7-4f0b-81de-4ae5689e7375
名前 / ファイル ライセンス アクション
110008725866.pdf 110008725866.pdf (1.5 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2016-03-16
タイトル
タイトル 生成型学習法を用いた姿勢変化に頑健な歩行者検出の検討(一般セッション,医用画像処理分野における計測・認識・理解)
その他のタイトル
その他のタイトル A study on a method for stable pedestrian detection against pose changes with generative learning
著者 吉田, 英史

× 吉田, 英史

WEKO 64371

吉田, 英史

Search repository
出口, 大輔

× 出口, 大輔

WEKO 64372

出口, 大輔

Search repository
井手, 一郎

× 井手, 一郎

WEKO 64373

井手, 一郎

Search repository
村瀬, 洋

× 村瀬, 洋

WEKO 64374

村瀬, 洋

Search repository
後藤, 邦博

× 後藤, 邦博

WEKO 64375

後藤, 邦博

Search repository
木村, 好克

× 木村, 好克

WEKO 64376

木村, 好克

Search repository
内藤, 貴志

× 内藤, 貴志

WEKO 64377

内藤, 貴志

Search repository
YOSHIDA, Hidefumi

× YOSHIDA, Hidefumi

WEKO 64378

YOSHIDA, Hidefumi

Search repository
DEGUCHI, Daisuke

× DEGUCHI, Daisuke

WEKO 64379

DEGUCHI, Daisuke

Search repository
IDE, Ichiro

× IDE, Ichiro

WEKO 64380

IDE, Ichiro

Search repository
MURASE, Hiroshi

× MURASE, Hiroshi

WEKO 64381

MURASE, Hiroshi

Search repository
GOTO, Kunihiro

× GOTO, Kunihiro

WEKO 64382

GOTO, Kunihiro

Search repository
KIMURA, Yoshikatsu

× KIMURA, Yoshikatsu

WEKO 64383

KIMURA, Yoshikatsu

Search repository
NAITO, Takashi

× NAITO, Takashi

WEKO 64384

NAITO, Takashi

Search repository
権利
権利情報 (c)一般社団法人電子情報通信学会 本文データは学協会の許諾に基づきCiNiiから複製したものである
キーワード
主題Scheme Other
主題 歩行者検出
キーワード
主題Scheme Other
主題 生成型学習法
キーワード
主題Scheme Other
主題 HOG
キーワード
主題Scheme Other
主題 SVM
キーワード
主題Scheme Other
主題 Pedestrian detection
キーワード
主題Scheme Other
主題 Generative learning
抄録
内容記述 近年,車載カメラで撮影された画像から歩行者を検出する研究が注目されている.しかし,姿勢変化が大きく,かつ様々な背景に存在する歩行者を検出することは容易ではない.本研究では,車載カメラ画像からの歩行者検出において,多様な姿勢変化に対応するための手法を提案する.画像中の歩行者の見えを特徴とした従来の歩行者検出手法では,歩行者の姿勢変化や歩行者を取り巻く環境の変化に対応するために,学習用に事前に大量の歩行者画像を人手で収集する必要があった.提案手法ではこの問題に対して,少数の歩行者画像をいくつかの姿勢クラスに分類した後に,姿勢クラスごとに多様な歩行者画像を生成し,さらにこの姿勢クラスをテンプレートとしたマルチテンプレート型の識別器を構築することで解決を図る.実験の結果,従来手法に比べて提案手法の検出精度は大きく向上し,その有効性を確認した.Recently, pedestrian detection from in-vehicle camera images is being focused. However, it is difficult to detect pedestrians due to the variety of their poses and backgrounds. To tackle this problem, we propose a method to detect various pedestrians from in-vehicle camera images. To deal with changes of pedestrians' pose and environment, most existing methods making use of their appearance require to prepare a lot of pedestrian images manually. The proposed method classifies a small number of pedestrian images into several pose classes and then generates various pedestrian images from each pose class. Finally, the proposed method constructs a classifier based on multiple templates from each pedestrian pose. Experimental results showed that the detection accuracy of the method outperformed existing methods, and we confirmed its effectiveness. [Note]This document is an informal handout distributed at an IEICE TC-PRMU workshop.
内容記述タイプ Abstract
出版者
出版者 一般社団法人電子情報通信学会
言語
言語 jpn
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
ISSN
収録物識別子タイプ ISSN
収録物識別子 0913-5685
書誌情報 電子情報通信学会技術研究報告. MI, 医用画像

巻 111, 号 49, p. 127-132, 発行日 2011-05-12
著者版フラグ
値 publisher
シリーズ
関連名称
関連名称 IEICE Technical Report;IE2011-31, PRMU2011-23, MI2011-23
URI
識別子 http://ci.nii.ac.jp/naid/110008725866/
識別子タイプ URI
URI
識別子 http://hdl.handle.net/2237/23855
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 15:15:18.174216
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio