ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "58d71007-1ca9-4f60-a354-aaf3ededf2de"}, "_deposit": {"id": "26597", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "26597"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00026597", "sets": ["314"]}, "author_link": ["87955", "87956"], "item_10_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2018-09", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "3", "bibliographicPageEnd": "953", "bibliographicPageStart": "935", "bibliographicVolumeNumber": "58", "bibliographic_titles": [{"bibliographic_title": "Structural and Multidisciplinary Optimization", "bibliographic_titleLang": "en"}]}]}, "item_10_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "This study demonstrates the use of Newton method to solve topology optimization problems of density type for linear elastic bodies to minimize the maximum von Mises stress. We use the Kreisselmeier–Steinhauser (KS) function with respect to von Mises stress as a cost function to avoid the non-differentiability of the maximum von Mises stress. For the design variable, we use a function defined in the domain of a linear elastic body with no restriction on the range and assume that a density is given by a sigmoid function of the function of design variable. The main aim of this study involves evaluating the second derivative of the KS function with respect to variation of the design variable and to propose an iterative scheme based on an H^1 Newton method as opposed to the H^1 gradient method that was presented in previous studies. The effectiveness of the scheme is demonstrated by numerical results for several linear elastic problems. The numerical results show that the speed of the proposed H^1 Newton method exceeds that of the H^1 gradient method.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_10_description_5": {"attribute_name": "内容記述", "attribute_value_mlt": [{"subitem_description": "ファイル公開:2019/09/01", "subitem_description_language": "ja", "subitem_description_type": "Other"}]}, "item_10_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Springer", "subitem_publisher_language": "en"}]}, "item_10_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type": "isVersionOf", "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1007/s00158-018-1937-z", "subitem_relation_type_select": "DOI"}}]}, "item_10_rights_12": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "“This is a post-peer-review, pre-copyedit version of an article published in [Structural and Multidisciplinary Optimization]. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00158-018-1937-z”.", "subitem_rights_language": "en"}]}, "item_10_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "author"}]}, "item_10_source_id_61": {"attribute_name": "ISSN(print)", "attribute_value_mlt": [{"subitem_source_identifier": "1615-147X", "subitem_source_identifier_type": "PISSN"}]}, "item_10_source_id_62": {"attribute_name": "ISSN(Online)", "attribute_value_mlt": [{"subitem_source_identifier": "1615-1488", "subitem_source_identifier_type": "EISSN"}]}, "item_1615787544753": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_ab4af688f83e57aa", "subitem_version_type": "AM"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Chancharoen, Wares", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "87955", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Azegami, Hideyuki", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "87956", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-09-01"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "main.pdf", "filesize": [{"value": "2.1 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 2100000.0, "url": {"label": "main", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/26597/files/main.pdf"}, "version_id": "c1ffbedf-a881-44a1-b91b-777e93f76a42"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Topology optimization", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Stress concentration", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Kreisselmeier–Steinhauser function", "subitem_subject_scheme": "Other"}, {"subitem_subject": "H^1 gradient method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "H^1 Newton method", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Topology optimization of density type for a linear elastic body by using the second derivative of a KS function with respect to von Mises stress", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Topology optimization of density type for a linear elastic body by using the second derivative of a KS function with respect to von Mises stress", "subitem_title_language": "en"}]}, "item_type_id": "10", "owner": "1", "path": ["314"], "permalink_uri": "http://hdl.handle.net/2237/00028800", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2018-11-13"}, "publish_date": "2018-11-13", "publish_status": "0", "recid": "26597", "relation": {}, "relation_version_is_last": true, "title": ["Topology optimization of density type for a linear elastic body by using the second derivative of a KS function with respect to von Mises stress"], "weko_shared_id": -1}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500a 雑誌掲載論文
  3. 学術雑誌

Topology optimization of density type for a linear elastic body by using the second derivative of a KS function with respect to von Mises stress

http://hdl.handle.net/2237/00028800
http://hdl.handle.net/2237/00028800
52766403-7071-4f46-a0dc-42c0bc3d3fd5
名前 / ファイル ライセンス アクション
main.pdf main (2.1 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2018-11-13
タイトル
タイトル Topology optimization of density type for a linear elastic body by using the second derivative of a KS function with respect to von Mises stress
言語 en
著者 Chancharoen, Wares

× Chancharoen, Wares

WEKO 87955

en Chancharoen, Wares

Search repository
Azegami, Hideyuki

× Azegami, Hideyuki

WEKO 87956

en Azegami, Hideyuki

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利
言語 en
権利情報 “This is a post-peer-review, pre-copyedit version of an article published in [Structural and Multidisciplinary Optimization]. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00158-018-1937-z”.
キーワード
主題Scheme Other
主題 Topology optimization
キーワード
主題Scheme Other
主題 Stress concentration
キーワード
主題Scheme Other
主題 Kreisselmeier–Steinhauser function
キーワード
主題Scheme Other
主題 H^1 gradient method
キーワード
主題Scheme Other
主題 H^1 Newton method
抄録
内容記述 This study demonstrates the use of Newton method to solve topology optimization problems of density type for linear elastic bodies to minimize the maximum von Mises stress. We use the Kreisselmeier–Steinhauser (KS) function with respect to von Mises stress as a cost function to avoid the non-differentiability of the maximum von Mises stress. For the design variable, we use a function defined in the domain of a linear elastic body with no restriction on the range and assume that a density is given by a sigmoid function of the function of design variable. The main aim of this study involves evaluating the second derivative of the KS function with respect to variation of the design variable and to propose an iterative scheme based on an H^1 Newton method as opposed to the H^1 gradient method that was presented in previous studies. The effectiveness of the scheme is demonstrated by numerical results for several linear elastic problems. The numerical results show that the speed of the proposed H^1 Newton method exceeds that of the H^1 gradient method.
言語 en
内容記述タイプ Abstract
内容記述
内容記述 ファイル公開:2019/09/01
言語 ja
内容記述タイプ Other
出版者
言語 en
出版者 Springer
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 https://doi.org/10.1007/s00158-018-1937-z
ISSN(print)
収録物識別子タイプ PISSN
収録物識別子 1615-147X
ISSN(Online)
収録物識別子タイプ EISSN
収録物識別子 1615-1488
書誌情報 en : Structural and Multidisciplinary Optimization

巻 58, 号 3, p. 935-953, 発行日 2018-09
著者版フラグ
値 author
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 10:57:26.702400
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3