WEKO3
AND
アイテム
{"_buckets": {"deposit": "225ada5c-ef3e-428e-ac4d-7eafb948312b"}, "_deposit": {"id": "30330", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "30330"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00030330"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2020-03", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "3", "bibliographicPageStart": "032112", "bibliographicVolumeNumber": "27", "bibliographic_titles": [{"bibliographic_title": "Physics of Plasmas"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Approximated forms of the third and fourth moments of a velocity distribution function are derived by using a perturbed velocity distribution function around a characteristic spatial scale on the gyroradius derived by Thompson [Rep. Prog. Phys. 24, 363\u2013424 (1961)]. Then, they are evaluated by using a two-dimensional full kinetic Vlasov simulation result of the transverse Kelvin\u2013Helmholtz instability. It is shown that the derived form of the fourth moment is in agreement with the one calculated from the distribution function data of the Vlasov simulation. On the other hand, the derived form of the third moment is quite different from the one (i.e., heat flux tensor) calculated from the distribution function data of the Vlasov simulation. The results suggest that the perturbed velocity distribution function of Thompson needs an improvement.", "subitem_description_type": "Abstract"}]}, "item_10_description_5": {"attribute_name": "\u5185\u5bb9\u8a18\u8ff0", "attribute_value_mlt": [{"subitem_description": "\u30d5\u30a1\u30a4\u30eb\u516c\u958b\uff1a2021/03/01", "subitem_description_type": "Other"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "AIP Publishing"}]}, "item_10_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1063/1.5139442", "subitem_relation_type_select": "DOI"}}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "Copyright 2020 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.The following article appeared in (Physics of Plasmas. v.27, n.3, 2020, p.032112) and may be found at (http://dx.doi.org/10.1063/1.5139442)."}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_61": {"attribute_name": "ISSN\uff08print\uff09", "attribute_value_mlt": [{"subitem_source_identifier": "1070-664X", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Umeda, Takayuki"}], "nameIdentifiers": [{"nameIdentifier": "100617", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2021-03-01"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "1_5139442.pdf", "filesize": [{"value": "2.1 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2100000.0, "url": {"label": "1_5139442", "url": "https://nagoya.repo.nii.ac.jp/record/30330/files/1_5139442.pdf"}, "version_id": "329d48c8-5342-4a85-b13a-1b6ed23caddb"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Evaluating higher moments in the transverse Kelvin\u2013Helmholtz instability by full kinetic simulation", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Evaluating higher moments in the transverse Kelvin\u2013Helmholtz instability by full kinetic simulation"}]}, "item_type_id": "10", "owner": "1", "path": ["879/880/881"], "permalink_uri": "http://hdl.handle.net/2237/00032516", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2020-07-15"}, "publish_date": "2020-07-15", "publish_status": "0", "recid": "30330", "relation": {}, "relation_version_is_last": true, "title": ["Evaluating higher moments in the transverse Kelvin\u2013Helmholtz instability by full kinetic simulation"], "weko_shared_id": null}
Evaluating higher moments in the transverse Kelvin–Helmholtz instability by full kinetic simulation
http://hdl.handle.net/2237/00032516
fe5a58f2-f521-45f7-aaf6-6e03e4f5d490
名前 / ファイル | ライセンス | アクション | |
---|---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2020-07-15 | |||||
タイトル | ||||||
タイトル | Evaluating higher moments in the transverse Kelvin–Helmholtz instability by full kinetic simulation | |||||
著者 |
Umeda, Takayuki
× Umeda, Takayuki |
|||||
権利 | ||||||
権利情報 | Copyright 2020 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.The following article appeared in (Physics of Plasmas. v.27, n.3, 2020, p.032112) and may be found at (http://dx.doi.org/10.1063/1.5139442). | |||||
抄録 | ||||||
内容記述 | Approximated forms of the third and fourth moments of a velocity distribution function are derived by using a perturbed velocity distribution function around a characteristic spatial scale on the gyroradius derived by Thompson [Rep. Prog. Phys. 24, 363–424 (1961)]. Then, they are evaluated by using a two-dimensional full kinetic Vlasov simulation result of the transverse Kelvin–Helmholtz instability. It is shown that the derived form of the fourth moment is in agreement with the one calculated from the distribution function data of the Vlasov simulation. On the other hand, the derived form of the third moment is quite different from the one (i.e., heat flux tensor) calculated from the distribution function data of the Vlasov simulation. The results suggest that the perturbed velocity distribution function of Thompson needs an improvement. | |||||
内容記述タイプ | Abstract | |||||
内容記述 | ||||||
内容記述 | ファイル公開:2021/03/01 | |||||
内容記述タイプ | Other | |||||
出版者 | ||||||
出版者 | AIP Publishing | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプresource | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
DOI | ||||||
関連識別子 | ||||||
識別子タイプ | DOI | |||||
関連識別子 | https://doi.org/10.1063/1.5139442 | |||||
ISSN(print) | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 1070-664X | |||||
書誌情報 |
Physics of Plasmas 巻 27, 号 3, p. 032112, 発行日 2020-03 |
|||||
著者版フラグ | ||||||
値 | publisher |