ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "225ada5c-ef3e-428e-ac4d-7eafb948312b"}, "_deposit": {"id": "30330", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "30330"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00030330"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2020-03", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "3", "bibliographicPageStart": "032112", "bibliographicVolumeNumber": "27", "bibliographic_titles": [{"bibliographic_title": "Physics of Plasmas"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Approximated forms of the third and fourth moments of a velocity distribution function are derived by using a perturbed velocity distribution function around a characteristic spatial scale on the gyroradius derived by Thompson [Rep. Prog. Phys. 24, 363\u2013424 (1961)]. Then, they are evaluated by using a two-dimensional full kinetic Vlasov simulation result of the transverse Kelvin\u2013Helmholtz instability. It is shown that the derived form of the fourth moment is in agreement with the one calculated from the distribution function data of the Vlasov simulation. On the other hand, the derived form of the third moment is quite different from the one (i.e., heat flux tensor) calculated from the distribution function data of the Vlasov simulation. The results suggest that the perturbed velocity distribution function of Thompson needs an improvement.", "subitem_description_type": "Abstract"}]}, "item_10_description_5": {"attribute_name": "\u5185\u5bb9\u8a18\u8ff0", "attribute_value_mlt": [{"subitem_description": "\u30d5\u30a1\u30a4\u30eb\u516c\u958b\uff1a2021/03/01", "subitem_description_type": "Other"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "AIP Publishing"}]}, "item_10_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1063/1.5139442", "subitem_relation_type_select": "DOI"}}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "Copyright 2020 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.The following article appeared in (Physics of Plasmas. v.27, n.3, 2020, p.032112) and may be found at (http://dx.doi.org/10.1063/1.5139442)."}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_61": {"attribute_name": "ISSN\uff08print\uff09", "attribute_value_mlt": [{"subitem_source_identifier": "1070-664X", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Umeda, Takayuki"}], "nameIdentifiers": [{"nameIdentifier": "100617", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2021-03-01"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "1_5139442.pdf", "filesize": [{"value": "2.1 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2100000.0, "url": {"label": "1_5139442", "url": "https://nagoya.repo.nii.ac.jp/record/30330/files/1_5139442.pdf"}, "version_id": "329d48c8-5342-4a85-b13a-1b6ed23caddb"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Evaluating higher moments in the transverse Kelvin\u2013Helmholtz instability by full kinetic simulation", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Evaluating higher moments in the transverse Kelvin\u2013Helmholtz instability by full kinetic simulation"}]}, "item_type_id": "10", "owner": "1", "path": ["879/880/881"], "permalink_uri": "http://hdl.handle.net/2237/00032516", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2020-07-15"}, "publish_date": "2020-07-15", "publish_status": "0", "recid": "30330", "relation": {}, "relation_version_is_last": true, "title": ["Evaluating higher moments in the transverse Kelvin\u2013Helmholtz instability by full kinetic simulation"], "weko_shared_id": null}
  1. F300 宇宙地球環境研究所
  2. F300a 雑誌掲載論文
  3. 学術雑誌

Evaluating higher moments in the transverse Kelvin–Helmholtz instability by full kinetic simulation

http://hdl.handle.net/2237/00032516
fe5a58f2-f521-45f7-aaf6-6e03e4f5d490
名前 / ファイル ライセンス アクション
1_5139442.pdf 1_5139442 (2.1 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2020-07-15
タイトル
タイトル Evaluating higher moments in the transverse Kelvin–Helmholtz instability by full kinetic simulation
著者 Umeda, Takayuki

× Umeda, Takayuki

WEKO 100617

Umeda, Takayuki

Search repository
権利
権利情報 Copyright 2020 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.The following article appeared in (Physics of Plasmas. v.27, n.3, 2020, p.032112) and may be found at (http://dx.doi.org/10.1063/1.5139442).
抄録
内容記述 Approximated forms of the third and fourth moments of a velocity distribution function are derived by using a perturbed velocity distribution function around a characteristic spatial scale on the gyroradius derived by Thompson [Rep. Prog. Phys. 24, 363–424 (1961)]. Then, they are evaluated by using a two-dimensional full kinetic Vlasov simulation result of the transverse Kelvin–Helmholtz instability. It is shown that the derived form of the fourth moment is in agreement with the one calculated from the distribution function data of the Vlasov simulation. On the other hand, the derived form of the third moment is quite different from the one (i.e., heat flux tensor) calculated from the distribution function data of the Vlasov simulation. The results suggest that the perturbed velocity distribution function of Thompson needs an improvement.
内容記述タイプ Abstract
内容記述
内容記述 ファイル公開:2021/03/01
内容記述タイプ Other
出版者
出版者 AIP Publishing
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
DOI
関連識別子
識別子タイプ DOI
関連識別子 https://doi.org/10.1063/1.5139442
ISSN(print)
収録物識別子タイプ ISSN
収録物識別子 1070-664X
書誌情報 Physics of Plasmas

巻 27, 号 3, p. 032112, 発行日 2020-03
著者版フラグ
値 publisher
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 08:54:15.573491
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio