ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "e4af87ab-17bb-486c-bc78-2c097c30106d"}, "_deposit": {"id": "8678", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "8678"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00008678", "sets": ["1038"]}, "author_link": ["24406", "24407", "24408", "24409"], "item_18_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2006-12", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "44", "bibliographicPageStart": "39", "bibliographic_titles": [{"bibliographic_title": "4th Symposium on \"Intelligent Media Integration for Social Information Infrastructure\" December 7-8, 2006", "bibliographic_titleLang": "en"}]}]}, "item_18_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "In this paper we deal with the blind source separation (BSS) problem in the frequency domain. To solve this problem we adopt the idea of super-exponential methods (SEM) and eigenvector algorithms (EVA) with reference signals. SEMs have the attractive property that they are computationally efficient and converge to the desired solutions at a super-exponential rate. Conventional SEMs have the problem that they are sensitive to Gaussian noise. To overcome this issue, we propose the robust SEM, which utilize only the higher-order cumulants. SEMs, however, have the drawback that they fail to extract all the source signals due to the failure of the deflation process. To compensate for this drawback, we propose the EVA with reference signals, which makes it possible to extract all the sources.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_18_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/10429"}]}, "item_18_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "INTELLIGENT MEDIA INTEGRATION  NAGOYA UNIVERSITY / COE", "subitem_publisher_language": "en"}]}, "item_18_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_18_text_14": {"attribute_name": "フォーマット", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Ito, Masanori", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "24406", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Kawamoto, Mitsuru", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "24407", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Ohnishi, Noboru", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "24408", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Inouye, Yujiro", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "24409", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-19"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "p39-44_Super_exponential_algorithms.pdf", "filesize": [{"value": "376.7 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 376700.0, "url": {"label": "p39-44_Super_exponential_algorithms.pdf", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/8678/files/p39-44_Super_exponential_algorithms.pdf"}, "version_id": "099bbd7a-8587-4a2e-9d78-440f57591d99"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "conference paper", "resourceuri": "http://purl.org/coar/resource_type/c_5794"}]}, "item_title": "SUPER-EXPONENTIAL ALGORITHMS AND EIGENVECTOR ALGORITHMS FOR BLIND SOURCE SEPARATIOIN", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "SUPER-EXPONENTIAL ALGORITHMS AND EIGENVECTOR ALGORITHMS FOR BLIND SOURCE SEPARATIOIN", "subitem_title_language": "en"}]}, "item_type_id": "18", "owner": "1", "path": ["1038"], "permalink_uri": "http://hdl.handle.net/2237/10429", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2008-08-22"}, "publish_date": "2008-08-22", "publish_status": "0", "recid": "8678", "relation": {}, "relation_version_is_last": true, "title": ["SUPER-EXPONENTIAL ALGORITHMS AND EIGENVECTOR ALGORITHMS FOR BLIND SOURCE SEPARATIOIN"], "weko_shared_id": -1}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500g COE
  3. 社会情報基盤のための音声映像の知的統合

SUPER-EXPONENTIAL ALGORITHMS AND EIGENVECTOR ALGORITHMS FOR BLIND SOURCE SEPARATIOIN

http://hdl.handle.net/2237/10429
http://hdl.handle.net/2237/10429
eb85e53a-9a64-4c09-a584-1685bb79820e
名前 / ファイル ライセンス アクション
p39-44_Super_exponential_algorithms.pdf p39-44_Super_exponential_algorithms.pdf (376.7 kB)
Item type 会議発表論文 / Conference Paper(1)
公開日 2008-08-22
タイトル
タイトル SUPER-EXPONENTIAL ALGORITHMS AND EIGENVECTOR ALGORITHMS FOR BLIND SOURCE SEPARATIOIN
言語 en
著者 Ito, Masanori

× Ito, Masanori

WEKO 24406

en Ito, Masanori

Search repository
Kawamoto, Mitsuru

× Kawamoto, Mitsuru

WEKO 24407

en Kawamoto, Mitsuru

Search repository
Ohnishi, Noboru

× Ohnishi, Noboru

WEKO 24408

en Ohnishi, Noboru

Search repository
Inouye, Yujiro

× Inouye, Yujiro

WEKO 24409

en Inouye, Yujiro

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
抄録
内容記述 In this paper we deal with the blind source separation (BSS) problem in the frequency domain. To solve this problem we adopt the idea of super-exponential methods (SEM) and eigenvector algorithms (EVA) with reference signals. SEMs have the attractive property that they are computationally efficient and converge to the desired solutions at a super-exponential rate. Conventional SEMs have the problem that they are sensitive to Gaussian noise. To overcome this issue, we propose the robust SEM, which utilize only the higher-order cumulants. SEMs, however, have the drawback that they fail to extract all the source signals due to the failure of the deflation process. To compensate for this drawback, we propose the EVA with reference signals, which makes it possible to extract all the sources.
言語 en
内容記述タイプ Abstract
出版者
言語 en
出版者 INTELLIGENT MEDIA INTEGRATION NAGOYA UNIVERSITY / COE
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_5794
タイプ conference paper
書誌情報 en : 4th Symposium on "Intelligent Media Integration for Social Information Infrastructure" December 7-8, 2006

p. 39-44, 発行日 2006-12
フォーマット
application/pdf
著者版フラグ
値 publisher
URI
識別子 http://hdl.handle.net/2237/10429
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 19:55:22.201847
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3